Timothy J. Fort

Learn More
We are studying the functional "logic" of neuromodulatory actions in a simple central pattern generator (CPG)-effector system, the heart of the blue crab Callinectes sapidus. The rhythmic contractions of this heart are neurogenic, driven by rhythmic motor patterns generated by the cardiac ganglion (CG). Here we used anatomical and physiological methods to(More)
In regulating neurophysiological systems, neuromodulators exert multiple actions at multiple sites in such a way as to control the activity in an integrated manner. We are studying how this happens in a simple central pattern generator (CPG)-effector system, the heart of the blue crab Callinectes sapidus. The rhythmic contractions of this heart are(More)
Theoretical studies have suggested that the output of a central pattern generator (CPG) must be matched to the properties of its peripheral effector system to ensure production of functional behavior. One way that such matching could be achieved is through coordinated central and peripheral modulation. In this study, morphological and physiological methods(More)
Calsequestrins (CSQ) are high capacity, medium affinity, calcium-binding proteins present in the sarcoplasmic reticulum (SR) of cardiac and skeletal muscles. CSQ sequesters Ca²⁺ during muscle relaxation and increases the Ca²⁺-storage capacity of the SR. Mammalian CSQ has been well studied as a model of human disease, but little is known about the(More)
When modulators of neuromuscular function alter the motor neuron spike patterns that elicit muscle contractions, it is predicted that they will also retune correspondingly the connecting processes of the neuromuscular transform. Here we confirm this prediction by analyzing data from the cardiac neuromuscular system of the blue crab. We apply a method that(More)
The neurogenic heart of decapod crustaceans is a very simple, self-contained, model central pattern generator (CPG)-effector system. The CPG, the nine-neuron cardiac ganglion (CG), is embedded in the myocardium itself; it generates bursts of spikes that are transmitted by the CG's five motor neurons to the periphery of the system, the myocardium, to produce(More)
In regulating neurophysiological systems, neuromodulators exert multiple actions at multiple sites in such a way as to control the activity in an integrated manner. We are studying how this happens in a simple central pattern generator (CPG)-effector system, the heart of the blue crab Callinectes sapidus. The rhythmic contractions of this heart are(More)
  • 1