Learn More
Cofilin is a ubiquitous actin-binding factor required for the reorganization of actin filaments in eukaryotes. The dephosphorylation of cofilin enables its actin severing and depolymerizing activity and drives directional cell motility, thus providing a simple phosphoregulatory mechanism for actin reorganization. To date, two cofilin-specific phosphatases(More)
The problem of driving an autonomous vehicle in normal traffic engages many areas of AI research and has substantial economic significance. We describe work in progress on a new approach to this problem that uses a decision-theoretic architecture using dynamic probabilistic networks. The architecture provides a sound solution to the problems of sensor(More)
Automatic symbolic traffic scene analysis is essential to many areas of IVHS (Intelligent Vehicle Highway Systems). Traffic scene information can be used to optimize traffic flow during busy periods , identify stalled vehicles and accidents, and aid the decision-making of an autonomous vehicle controller. Improvements in technologies for machine(More)
Actin and its key regulatory component, cofilin, are found together in large rod-shaped assemblies in neurons subjected to energy stress. Such inclusions are also enriched in Alzheimer's disease brain, and appear in transgenic models of neurodegeneration. Neuronal insults, such as energy loss and/or oxidative stress, result in rapid dephosphorylation of the(More)
We have identified and characterized Nak1, a 652- amino acid NH(2)-terminal kinase belonging to the group II germinal center kinase (GCK) family, in Schizosaccharomyces pombe. We found that nak1 is essential for cell proliferation. Furthermore, partial repression of nak1, under regulation of an integrated nmt1 promoter, resulted in an aberrant round(More)
Cellular stimuli generate reactive oxygen species (ROS) via the local action of NADPH oxidases (Nox) to modulate cytoskeletal organization and cell migration through unknown mechanisms. Cofilin is a major regulator of cellular actin dynamics whose activity is controlled by phosphorylation/dephosphorylation at Ser3. Here we show that Slingshot-1L (SSH-1L), a(More)
Progressive supranuclear palsy (PSP) is a movement disorder characterized by tau neuropathology where the underlying mechanism is unknown. An SNP (rs1768208 C/T) has been identified as a strong risk factor for PSP. Here, we identified a much higher T-allele occurrence and increased levels of the pro-apoptotic protein appoptosin in PSP patients. Elevations(More)
Intracellular protein trafficking plays an important role in neuronal function and survival. Protein misfolding is a common theme found in many neurodegenerative diseases, and intracellular trafficking machinery contributes to the pathological accumulation and clearance of misfolded proteins. Although neurodegenerative diseases exhibit distinct pathological(More)