Timothy G Foran

Learn More
Wireless sensor networks have become increasingly common in everyday applications due to decreasing technology costs and improved product performance, robustness and extensibility. Wearable physiological monitoring systems have been utilized in a variety of studies, particularly those investigating ECG or EMG during human movement or sleep monitoring. These(More)
The five-times-sit-to-stand test (FTSS) is an established assessment of lower limb strength, balance dysfunction and falls risk. Clinically, the time taken to complete the task is recorded with longer times indicating increased falls risk. Quantifying the movement using tri-axial accelerometers may provide a more objective and potentially more accurate(More)
This study compares the performance of algorithms for body-worn sensors used with a spatiotemporal gait analysis platform to the GAITRite electronic walkway. The mean error in detection time (true error) for heel strike and toe-off was 33.9 ± 10.4 ms and 3.8 ± 28.7 ms, respectively. The ICC for temporal parameters step, stride, swing and stance time was(More)
An instrumented version of the five-times-sit-to-stand test was performed in the homes of a group of older adults, categorised as fallers or non-fallers. Tri-axial accelerometers were secured to the sternum and anterior thigh of each participant during the assessment. Accelerometer data were then used to examine the timing of the movement, as well as the(More)
One in three adults aged over 65 falls every year, resulting in enormous costs to society. Incidents of falling vary with time of day, peaking in the early morning. The aim of this study was to determine if the ability of instrumented gait and balance assessments to discriminate between participants based on their falls history varies diurnally. Body-worn(More)
The current study examined the role of vision in spatial updating and its potential contribution to an increased risk of falls in older adults. Spatial updating was assessed using a path integration task in fall-prone and healthy older adults. Specifically, participants conducted a triangle completion task in which they were guided along two sides of a(More)
Hypertension is a condition of persistently elevated blood pressure, associated with increased cardiovascular risk. Non-invasive BP measurement using Korotkoff sounds is the most common method of screening for the condition. The possibility of inaccurate readings leading to a false diagnosis of hypertension (pseudo-hypertension) is of concern. Stiffened(More)
Falls in the elderly are a major problem worldwide with enormous associated economic and societal costs. Minimum ground clearance (MGC) is an important gait variable when considering trip-related falls risk. This study aimed to investigate the clinical relevance of inertial sensor derived parameters, previously shown to be related to MGC. Previous research(More)
Inertial sensors have become increasingly popular in gait analysis, due to their highly portable, low cost, and potentially wireless nature. However, accurate spatial gait analysis using few sensors remains a challenge. A gyroscope-based algorithm for spatial gait analysis is presented. This novel algorithm (SGA) uses data from a single gyroscope attached(More)
Stiffening of the brachial artery is implicated in pseudo-hypertension. To date, a reliable clinical predictor of the condition has not been developed. This paper describes the development of prototype instrumentation and methodology for measurement of the brachial artery transmural pressure/cross-sectional area relationship in vivo. The methodology has(More)
  • 1