Timothy Edward John Behrens

Learn More
The techniques available for the interrogation and analysis of neuroimaging data have a large influence in determining the flexibility, sensitivity, and scope of neuroimaging experiments. The development of such methodologies has allowed investigators to address scientific questions that could not previously be answered and, as such, has become an important(More)
There has been much recent interest in using magnetic resonance diffusion imaging to provide information about anatomical connectivity in the brain, by measuring the anisotropic diffusion of water in white matter tracts. One of the measures most commonly derived from diffusion data is fractional anisotropy (FA), which quantifies how strongly directional the(More)
We present a direct extension of probabilistic diffusion tractography to the case of multiple fibre orientations. Using automatic relevance determination, we are able to perform online selection of the number of fibre orientations supported by the data at each voxel, simplifying the problem of tracking in a multi-orientation field. We then apply the(More)
A fully probabilistic framework is presented for estimating local probability density functions on parameters of interest in a model of diffusion. This technique is applied to the estimation of parameters in the diffusion tensor model, and also to a simple partial volume model of diffusion. In both cases the parameters of interest include parameters(More)
Typically in neuroimaging we are looking to extract some pertinent information from imperfect, noisy images of the brain. This might be the inference of percent changes in blood flow in perfusion FMRI data, segmentation of subcortical structures from structural MRI, or inference of the probability of an anatomical connection between an area of cortex and a(More)
Evidence concerning anatomical connectivities in the human brain is sparse and based largely on limited post-mortem observations. Diffusion tensor imaging has previously been used to define large white-matter tracts in the living human brain, but this technique has had limited success in tracing pathways into gray matter. Here we identified specific(More)
Our decisions are guided by outcomes that are associated with decisions made in the past. However, the amount of influence each past outcome has on our next decision remains unclear. To ensure optimal decision-making, the weight given to decision outcomes should reflect their salience in predicting future outcomes, and this salience should be modulated by(More)
The Human Connectome Project consortium led by Washington University, University of Minnesota, and Oxford University is undertaking a systematic effort to map macroscopic human brain circuits and their relationship to behavior in a large population of healthy adults. This overview article focuses on progress made during the first half of the 5-year project(More)
The ability to stop motor responses depends critically on the right inferior frontal cortex (IFC) and also engages a midbrain region consistent with the subthalamic nucleus (STN). Here we used diffusion-weighted imaging (DWI) tractography to show that the IFC and the STN region are connected via a white matter tract, which could underlie a "hyperdirect"(More)
A fundamental issue in neuroscience is the relation between structure and function. However, gross landmarks do not correspond well to microstructural borders and cytoarchitecture cannot be visualized in a living brain used for functional studies. Here, we used diffusion-weighted and functional MRI to test structure-function relations directly. Distinct(More)