Timothy E Higham

Learn More
The suction-feeding fish generates a flow field external to its head in order to draw prey into the mouth. To date there are very few empirical measurements that characterize the fluid mechanics of suction feeding, particularly the temporal and spatial patterns of water velocity in front of the fish. To characterize the flow in front of suction-feeding(More)
Suction feeding fish rapidly expand their oral cavity, resulting in a flow of water directed towards the mouth that is accompanied by a drop in pressure inside the buccal cavity. Pressure inside the mouth and fluid speed external to the mouth are understood to be mechanically linked but the relationship between them has never been empirically determined in(More)
Suction feeding fish draw prey into the mouth using a flow field that they generate external to the head. In this paper we present a multidimensional perspective on suction feeding performance that we illustrate in a comparative analysis of suction feeding ability in two members of Centrarchidae, the largemouth bass (Micropterus salmoides) and bluegill(More)
Animal movement and its muscular control are central topics in functional morphology. As experimentalists we often manipulate stimuli in a controlled setting or compare species to observe the degree of variation in movement and motor control of particular behaviors. Understanding and communicating the biological significance of these sources of variability(More)
It is well established that suction feeding fish use a variable amount of swimming (ram) during prey capture. However, the fluid mechanical effects of ram on suction feeding are not well established. In this study we quantified the effects of ram on the maximum fluid speed of the water entering the mouth during feeding as well as the spatial patterns of(More)
Although the maximal speeds of straight-ahead running are well-documented for many species of Anolis and other lizards, no previous study has experimentally determined the effects of turning on the locomotor performance of a lizard. Anolis lizards are a diverse group of arboreal species, and the discrete paths created by networks of perches in arboreal(More)
Lizards commonly climb in complex three-dimensional habitats, and gekkotans are particularly adept at doing this by using an intricate adhesive system involving setae on the ventral surface of their digits. However, it is not clear whether geckos always deploy their adhesive system, given that doing so may result in decreased (i.e. reduction in speed)(More)
The range of inclines and perch diameters in arboreal habitats poses a number of functional challenges for locomotion. To effectively overcome these challenges, arboreal lizards execute complex locomotor behaviors involving both the forelimbs and the hindlimbs. However, few studies have examined the role of forelimbs in lizard locomotion. To characterize(More)
The diversity of both the locomotor and feeding systems in fish is extensive, although little is known about the integrated evolution of the two systems. Virtually, all fish swim to ingest prey and all open their buccal cavity during prey capture, but the relationship between these two ubiquitous components of fish feeding strikes is unknown. We predicted(More)
Despite almost 50 years of research on the functional morphology and biomechanics of suction feeding, no consensus has emerged on how to characterize suction-feeding performance, or its morphological basis. We argue that this lack of unity in the literature is due to an unusually indirect and complex linkage between the muscle contractions that power(More)