Timothy Arnett

Learn More
Hypoxia is known to act as a general stimulator of cells derived from marrow precursors. We investigated the effect of oxygen tension on the formation and function of osteoclasts, the cells responsible for bore resorption, which are of promonocytic origin. Using 7- and 13-day cultures of mouse marrow cells on ivory discs, we found that reducing oxygen(More)
Accumulating evidence suggests that extracellular nucleotides, signaling through P2 receptors, play a role in modulating bone cell function. ATP and ADP stimulate osteoclastic resorption, while ATP and UTP are powerful inhibitors of bone formation by osteoblasts. We investigated changes in the expression of P2 receptors with cell differentiation in primary(More)
Many neuronal and non-neuronal cell types release ATP in a controlled manner. After release, extracellular ATP (or, following hydrolysis, ADP) acts on cells in a paracrine manner via P2 receptors. Extracellular nucleotides are now thought to play an important role in the regulation of bone cell function. ATP (and ADP), acting via the P2Y(1) receptor,(More)
  • Tim Arnett
  • The Proceedings of the Nutrition Society
  • 2003
Bone growth and turnover results from the coordinated activities of two key cell types. Bone matrix is deposited and mineralised by osteoblasts and it is resorbed by osteoclasts, multinucleate cells that excavate pits on bone surfaces. It has been known since the early 20th century that systemic acidosis causes depletion of the skeleton, an effect assumed(More)
Breast cancer has a prodigious capacity to metastasize to bone. In women with advanced breast cancer and bone metastases, bisphosphonates reduce the incidence of hypercalcaemia and skeletal morbidity. Recent clinical findings suggest that some bisphosphonates reduce the tumour burden in bone with a consequent increase in survival, raising the possibility(More)
Reports implicating Wnt signalling in the regulation of bone mass have prompted widespread interest in the use of Wnt mimetics for the treatment of skeletal disorders. To date much of this work has focused on their anabolic effects acting on cells of the osteoblast lineage. In this study we provide evidence that Wnts also regulate osteoclast formation and(More)
Extracellular nucleotides acting through P2 receptors elicit a wide range of responses in many cell types. There is increasing evidence that adenosine triphosphate (ATP) may function as an important local messenger in bone and cartilage. In this study, we used immunocytochemistry, employing novel polyclonal antibodies against P2X(1-7) receptors, and in situ(More)
Extracellular nucleotides, signaling through P2 receptors, may act as local regulators of bone cell function. We investigated the effects of nucleotide agonists [ATP, ADP, uridine triphosphate (UTP), and uridine diphosphate] and pyrophosphate (PPi, a key physiological inhibitor of mineralization) on the deposition and mineralization of collagenous matrix by(More)
Disaggregated chick osteoclasts sedimented onto bovine cortical bone slices excavate deep and sharply defined resorption lacunae that stain intensely with toluidine blue. We have used this observation to develop a simple light microscopic method for quantifying the bone resorptive activity of chick osteoclasts in vitro. Using this technique, we have found(More)
We investigated the effect of hypoxia on rat osteoblast function in long-term primary cultures. Reduction of pO2 from 20% to 5% and 2% decreased formation of mineralized bone nodules 1.7-fold and 11-fold, respectively. When pO2 was reduced further to 0.2%, bone nodule formation was almost abolished. The inhibitory effect of hypoxia on bone formation was(More)