Learn More
The acoustic properties of passive materials for ultrasonic transducers have been measured at room temperature in the frequency range from 25 to 65 MHz using ultrasonic spectroscopy. These materials include alumina/EPO-TEK 301 composites and tungsten/EPO-TEK 301 composites. Experimental results showed that the acoustic impedance of the composites(More)
This paper discusses the design, fabrication, and testing of sensitive broadband lithium niobate (LiNbO3) single-element ultrasonic transducers in the 20-80 MHz frequency range. Transducers of varying dimensions were built for an f# range of 2.0-3.1. The desired focal depths were achieved by either casting an acoustic lens on the transducer face or(More)
PURPOSE To review the dose limits and standardize the three-dimenional (3D) radiographic definition for the organs at risk (OARs) for thoracic radiotherapy (RT), including the lung, proximal bronchial tree, esophagus, spinal cord, ribs, and brachial plexus. METHODS AND MATERIALS The present study was performed by representatives from the Radiation Therapy(More)
PURPOSE To investigate the plasma dynamics of 5 proinflammatory/fibrogenic cytokines, including interleukin-1beta (IL-1β), IL-6, IL-8, tumor necrosis factor alpha (TNF-α), and transforming growth factor beta1 (TGF-β1) to ascertain their value in predicting radiation-induced lung toxicity (RILT), both individually and in combination with physical dosimetric(More)
This paper discusses the development of a 64-element 35-MHz composite ultrasonic array. This array was designed primarily for ocular imaging applications, and features 2-2 composite elements mechanically diced out of a fine-grain high-density Navy Type VI ceramic. Array elements were spaced at a 50-micron pitch, interconnected via a custom flexible circuit(More)
Ultrasound imaging at frequencies above 20 MHz is capable of achieving improved resolution in clinical applications requiring limited penetration depth. High frequency arrays that allow real-time imaging are desired for these applications but are not yet currently available. In this work, a method for fabricating fine-scale 2-2 composites suitable for(More)
Single crystal relaxor ferroelectrics of PZN-8%PT were investigated for potential application in ultrasound transducers. The full set of electromechanical properties was determined using combined resonance and laser interferometry techniques. Ultra-high length extensional coupling (k(33)) of 0.94 was observed, a 25% increase over Navy Type VI PZT ceramics.(More)
The performance of high frequency, single-element transducers depends greatly on the mechanical and electrical properties of the piezoelectric materials used. This study compares the design and performance of transducers incorporating different materials. The materials investigated include 1-3 lead zirconate titanate (PZT) fiber composite, lead titanate(More)
PURPOSE To evaluate rectal dose and post-treatment patient-reported bowel quality of life (QOL) following radiation therapy for prostate cancer. METHODS Patient-reported QOL was measured at baseline and 2-years via the expanded prostate cancer index composite (EPIC) for 90 patients. Linear regression modeling was performed using the baseline score for the(More)
OBJECTIVE We have previously demonstrated that tumor reduces in activity and size during the course of radiotherapy (RT) in a limited number of patients with non-small cell lung cancer (NSCLC). This study aimed to quantify the metabolic tumor volume (MTV) on PET and compare its changes with those of gross tumor volume (GTV) on CT during-RT for 3D conformal(More)