Learn More
In bilaterally symmetric organisms, the midline is a critical organizing center for the developing central nervous system. There is a striking conservation of the molecules and mechanisms that control axon path finding at the midline in vertebrate and invertebrate nervous systems. The majority of axons in the CNS cross the midline before projecting to their(More)
Effective interventions exist for many priority health problems in low income countries; prices are falling, and funds are increasing. However, progress towards agreed health goals remains slow. There is increasing consensus that stronger health systems are key to achieving improved health outcomes. There is much less agreement on quite how to strengthen(More)
Recognition molecules of the immunoglobulin (Ig) superfamily control axon guidance in the developing nervous system. Ig-like domains are among the most widely represented protein domains in the human genome, and the number of Ig superfamily proteins is strongly correlated with cellular complexity. In Drosophila, three Roundabout (Robo) Ig superfamily(More)
During nervous system development, commissural axons cross the midline despite the presence of repellant ligands. In Drosophila, commissural axons avoid premature responsiveness to the midline repellant Slit by expressing the endosomal sorting receptor Commissureless, which reduces surface expression of the Slit receptor Roundabout1 (Robo1). In this study,(More)
As the complexity of animal nervous systems has increased during evolution, developmental control of neuronal connectivity has become increasingly refined. How has functional diversification within related axon guidance molecules contributed to the evolution of nervous systems? To address this question, we explore the evolution of functional diversity(More)
The midline repellant ligand Slit and its Roundabout (Robo) family receptors constitute the major midline repulsive pathway in bilaterians. Slit proteins produced at the midline of the central nervous system (CNS) signal through Robo receptors expressed on axons to prevent them from crossing the midline, and thus regulate connectivity between the two sides(More)
During embryonic development, growing axons are guided by cellular signaling pathways that control a series of individual axon guidance decisions. In Drosophila, two major pathways (Netrin-Frazzled/DCC and Slit-Robo) regulate axon guidance in the embryonic ventral nerve cord, including the critical decision of whether or not to cross the midline. Studies in(More)
In animals with bilateral symmetry, midline crossing of axons in the developing central nervous system is regulated by Slit ligands and their neuronal Roundabout (Robo) receptors. Multiple structural domains are present in an evolutionarily conserved arrangement in Robo family proteins, but our understanding of the functional importance of individual(More)
  • 1