Timon Rabczuk

Learn More
The aim of this manuscript is to give a practical overview of meshless methods (for solid mechanics) based on global weak forms through a simple and well-structured MATLAB code, to illustrate our discourse. The source code is available for download on our website and should help students and researchers get started with some of the basic meshless methods;(More)
Isogeometric analysis (IGA) represents a recently developed technology in computational mechanics that offers the possibility of integrating methods for analysis and Computer Aided Design (CAD) into a single, unified process. The implications to practical engineering design scenarios are profound, since the time taken from design to analysis is greatly(More)
This paper presents a three-dimensional, extrinsically enriched meshfree method for initiation, branching, growth and coalescence of an arbitrary number of cracks in non-linear solids including large deformations, for statics and dynamics. The novelty of the methodology is that only an extrinsic discontinuous enrichment and no near-tip enrichment is(More)
We derive, from an empirical interaction potential, an analytic formula for the elastic bending modulus of single-layer MoS2 (SLMoS2). By using this approach, we do not need to define or estimate a thickness value for SLMoS2, which is important due to the substantial controversy in defining this value for two-dimensional or ultrathin nanostructures such as(More)
The distinguishing structural feature of single-layered black phosphorus is its puckered structure, which leads to many novel physical properties. In this work, we first present a new parameterization of the Stillinger-Weber potential for single-layered black phosphorus. In doing so, we reveal the importance of a cross-pucker interaction term in capturing(More)
We propose in this paper a reduced order modelling technique based on domain partitioning for parametric problems of fracture. We show that coupling domain decomposition and projection-based model order reduction permits to focus the numerical effort where it is most needed: around the zones where damage propagates. No a priori knowledge of the damage(More)
We perform classical molecular dynamics simulations to examine the intrinsic energy dissipation in single-layer MoS2 nanoresonators, where the point of emphasis is to compare their dissipation characteristics with those of single-layer graphene. Our key finding is that MoS2 nanoresonators exhibit significantly lower energy dissipation, and thus higher(More)
We investigate the thermal conductivity in the armchair and zigzag MoS2 nanoribbons, by combining the non-equilibrium Green's function approach and the first-principles method. A strong orientation dependence is observed in the thermal conductivity. Particularly, the thermal conductivity for the armchair MoS2 nanoribbon is about 673.6 Wm(-1) K(-1) in the(More)
We perform classical molecular dynamics simulations to investigate the enhancement of the mass sensitivity and resonant frequency of graphene nanomechanical resonators that is achieved by driving them into the nonlinear oscillation regime. The mass sensitivity as measured by the resonant frequency shift is found to triple if the actuation energy is about(More)