Timon Idema

Learn More
Mitosis in the early syncytial Drosophila embryo is highly correlated in space and time, as manifested in mitotic wavefronts that propagate across the embryo. In this paper we investigate the idea that the embryo can be considered a mechanically-excitable medium, and that mitotic wavefronts can be understood as nonlinear wavefronts that propagate through(More)
Cell membrane organization is the result of the collective effect of many driving forces. Several of these, such as electrostatic and van der Waals forces, have been identified and studied in detail. In this article, we investigate and quantify another force, the interaction between inclusions via deformations of the membrane shape. For electrically neutral(More)
In development and differentiation, morphological changes often accompany mechanical changes [1], but it is unclear whether or when cells in embryos sense tissue elasticity. The earliest embryo is uniformly pliable, while adult tissues vary widely in mechanics from soft brain and stiff heart to rigid bone [2]. However, cell sensitivity to microenvironment(More)
In cells, membrane tubes are extracted by molecular motors. Although individual motors cannot provide enough force to pull a tube, clusters of such motors can. Here, we investigate, using a minimal in vitro model system, how the tube pulling process depends on fundamental properties of the motor species involved. Previously, it has been shown that(More)
The process of detecting and tracking biological features such as bacteria and nuclei is complicated by the fact that they constantly change their shape. Shape changes happen both continuously as the biological features grow and discontinuously as they divide or die. In this paper I present a new method of tracking such features for the case that they can(More)
Contact inhibition is the process by which cells switch from a motile growing state to a passive and stabilized state upon touching their neighbors. When two cells touch, an adhesion link is created between them by means of transmembrane E-cadherin proteins. Simultaneously, their actin filaments stop polymerizing in the direction perpendicular to the(More)
Membrane tubes and tubular networks are ubiquitous in living cells. Inclusions like proteins are vital for both the stability and the dynamics of such networks. These inclusions interact via the curvature deformations they impose on the membrane. We analytically study the resulting membrane mediated interactions in strongly curved tubular membranes. We(More)
Collections of motors dynamically organize to extract membrane tubes. These tubes grow but often pause or change direction as they traverse an underlying microtubule (MT) network. In vitro, membrane tubes also stall: they stop growing in length despite a large group of motors available at the tip to pull them forward. In these stationary membrane tubes in(More)
The interplay of membrane proteins is vital for many biological processes, such as cellular transport, cell division, and signal transduction between nerve cells. Theoretical considerations have led to the idea that the membrane itself mediates protein self-organization in these processes through minimization of membrane curvature energy. Here, we present a(More)
This Article contains an error in the Results section under subheading 'Particle-induced membrane deformation'. " For this we discern two extreme situations: tense vesicles with a (non-fluctuating) spherical shape (σ > 1 μ N/m) and floppy vesicles that exhibit clear fluctuations around a spherical shape (σ > 10 nN/m) ". should read: " For this we discern(More)