Learn More
We apply Lyapunov-based balanced truncation model reduction method to differential algebraic equations arising in modeling of RC circuits. This method is based on diagonalizing the solution of one projected Lyapunov equation. It is shown that this method preserves passivity and delivers an error bound. By making use of the special structure of circuit(More)
We study the class of linear differential-algebraic m-input m-output systems which have a transfer function with proper inverse. A sufficient condition for the transfer function to have proper inverse it that the system has 'strict and non-positive relative degree'. We present two main results: First, a so called 'zero dynamics form' is derived: this form(More)
We give an algorithmic approach to the approximative solution of operator Lyapunov equations for controllability. Motivated by the successfully applied alternating direction implicit (ADI) iteration for matrix Lyapunov equations, we consider this method for the determination of Gramian operators of infinite-dimensional control systems. In the case where the(More)
We propose a model reduction method for positive systems that ensures the positivity of the reduced-order model. In the standard as well as in the descriptor case, for continuous-time and discrete-time systems, our approach is based on constructing diagonal solutions of Lyapunov inequalities. These are linear matrix inequalities (LMIs), which are shown to(More)
We derive equivalent criteria for the existence of a feedback ensuring that a given linear and time-invariant differential-algebraic control system is regular or autonomous, respectively. Algebraic and geometric criteria are stated in terms of the involved matrices and the augmented Wong sequences. For systems which are not regularizable by feedback, we(More)