Learn More
Dextran is a chemically and physically complex polymer, breakdown of which is carried out by a variety of endo- and exodextranases. Enzymes in many groups can be classified as dextranases according to function: such enzymes include dextranhydrolases, glucodextranases, exoisomaltohydrolases, exoisomaltotriohydrases, and branched-dextran(More)
The decolorization of phenolphtalein upon complexation to cyclodextrins was studied to measure beta-cyclodextrin concentrations. Several factors possibly affecting the self-life of the dye were tested. By making the assays in 0.1 M NaCO3 solution beta-cyclodextrin concentrations down to 6 microM (SNR = 2) could be determined while the practical assay range(More)
Murine small heat shock protein 25 (Hsp25) carries a single Cys-residue at position 141 of its amino acid sequence. In glutathione redox buffers, Hsp25 equilibrates between reduced protein (PSH), mixed disulfide (PSSG) and protein dimer (PSSP) forms. At highly oxidative conditions, native Hsp25 predominantly forms PSSP while denatured Hsp25 forms PSSG.(More)
F1 antigen (Caf1) of Yersinia pestis is assembled via the Caf1M chaperone/Caf1A usher pathway. We investigated the ability of this assembly system to facilitate secretion of full-length heterologous proteins fused to the Caf1 subunit in Escherichia coli. Despite correct processing of a chimeric protein composed of a modified Caf1 signal peptide, mature(More)
Bacterial strains in the genus Bacillus were isolated from natural soil samples and screened for production of extracellular dextranases (E.C.3.2.1.11). One strain, determined by 16sRNA analysis as Paenibacillus illinoisensis exhibiting stable dextranase activity, was chosen for further analysis, and the dextranase from it was purified 733-fold using salt(More)
We have established a versatile method for studying the interaction of the oleosin gene product with oil bodies during oil body biogenesis in plants. Our approach has been to transiently express a green fluorescent protein (GFP)-tagged Arabidopsis oleosin gene fusion in tobacco leaf cells containing bona fide oil bodies and then to monitor oleosin-GFP(More)
This review summarizes the current knowledge on the structure, function, assembly, and biomedical applications of the family of adhesive fimbrial organelles assembled on the surface of Gram-negative pathogens via the FGL chaperone/usher pathway. Recent studies revealed the unique structural and functional properties of these organelles, distinguishing them(More)
Bacillus sp. X-b, a biocontrol agent against certain plant pathogenic fungi, secretes a complex of hydrolytic enzymes, composed of chitinase, chitosanase, laminarinase, lipase and protease. Homogenized mycelium of basidiomycete Macrolepiota procera induced activities of these enzymes more effectively than colloidal chitin or partially purified cell walls of(More)
Family 1 of glycosyl hydrolases is a large and biologically important group of enzymes. A new three-dimensional structure of this family, beta-glucosidase from Bacillus circulans sp. alkalophilus is reported here. This is the first structure of beta-glucosidase from an alkaliphilic organism. The model was determined by the molecular replacement method and(More)
Steric structure of Caf1M, a periplasmic molecular chaperone of Yersinia pestis, was reconstructed by computer modelling based on a statistically significant primary structure homology between Caf1M and PapD protein from Escherichia coli, and using the known atomic coordinates obtained by the X-ray crystallography for PapD. In the three-dimensional model of(More)