Timo Kanzleiter

Learn More
Acute cold exposure leads to norepinephrine release in brown adipose tissue (BAT) and activates uncoupling protein (UCP)1-mediated nonshivering thermogenesis. Chronic sympathetic stimulation is known to initiate mitochondrial biogenesis, UCP1 expression, hyperplasia of BAT, and recruitment of brown adipocytes in white adipose tissue (WAT) depots. Despite(More)
The health-promoting effects of regular exercise are well known, and myokines may mediate some of these effects. The small leucine-rich proteoglycan decorin has been described as a myokine for some time. However, its regulation and impact on skeletal muscle has not been investigated in detail. In this study, we report decorin to be differentially expressed(More)
Nob3 is a major obesity quantitative trait locus (QTL) identified in an intercross of New Zealand Obese (NZO) mice with C57BL/6J (B6), and by introgression of its 38 Mbp peak region into B6 (B6.NZO-Nob3.38). B6.NZO-Nob3.38 mice carrying the NZO allele exhibited markedly increased body weight, fat mass, lean mass and a lower energy expenditure, than the(More)
The GTPase ADP-ribosylation factor-related protein 1 (ARFRP1) is located at the trans-Golgi compartment and regulates the recruitment of Arf-like 1 (ARL1) and its effector golgin-245 to this compartment. Here, we show that liver-specific knockout of Arfrp1 in the mouse (Arfrp1(liv-/-)) resulted in early growth retardation, which was associated with reduced(More)
A region on mouse distal chromosome 1 (Chr. 1) that is highly enriched in quantitative trait loci (QTLs) controlling neural and behavioral phenotypes overlaps with the peak region of a major obesity QTL (Nob3.38), which we identified in an intercross of New Zealand Obese (NZO) mice with C57BL/6J (B6). By positional cloning we recently identified a(More)
CONTEXT Silencing proline-rich Akt substrate of 40-kDa (PRAS40) impairs insulin signalling in skeletal muscle. OBJECTIVE This study assessed the effects of over-expressing wild type or mutant AAA-PRAS40, in which the major phosphorylation sites and mTORC1-binding site were mutated, on insulin signalling in skeletal muscle. RESULTS Over-expression of(More)
The adaptive response of skeletal muscle to exercise training is tightly controlled and therefore requires transcriptional regulation. DNA methylation is an epigenetic mechanism known to modulate gene expression, but its contribution to exercise-induced adaptations in skeletal muscle is not well studied. Here, we describe a genome-wide analysis of DNA(More)
The homeodomain transcription factor Prep1 was previously shown to regulate insulin sensitivity. Our aim was to study the specific role of Prep1 for the regulation of energy metabolism in skeletal muscle. Muscle-specific ablation of Prep1 resulted in increased expression of respiratory chain subunits. This finding was consistent with an increase in(More)
Adipose tissue and skeletal muscle are organs that respond strongly to obesity and physical activity exhibiting high secretory activity. To identify novel putative adipomyokines, comparative expression studies of skeletal muscle and adipose tissue of lean (C57BL/6J) and obese (C57BL/6J on a high-fat diet and NZO) mice, of sedentary and endurance trained(More)
  • 1