#### Filter Results:

#### Publication Year

2009

2015

#### Publication Type

#### Co-author

#### Publication Venue

#### Key Phrases

Learn More

We prove that the symbolic dynamical system generated by a purely substitutive Arnoux-Rauzy sequence is measurably conjugate to a toral translation. The proof is based on an explicit construction of a fundamental domain with fractal boundary (a Rauzy fractal) for this toral translation.

An arithmetical discrete plane is said to have critical connecting thickness if its thickness is equal to the infimum of the set of values that preserve its 2-connectedness. This infimum thickness can be computed thanks to the fully subtractive algorithm. This multidimensional continued fraction algorithm consists, in its linear form, in subtracting the… (More)

Given a finite set S of unimodular Pisot substitutions, we provide a method for characterizing the infinite sequences over S that allow to generate a full discrete plane when, starting from a finite seed, we iterate the multidimensional dual substitutions associated with S. We apply our results to study the substitutions associated with the Brun… (More)

Rauzy fractals are compact sets with fractal boundary that can be associated with any unimodular Pisot irreducible substitution. These fractals can be defined as the Hausdorff limit of a sequence of compact planar sets, where each set is the projection of a finite union of faces of unit cubes. We exploit this combinatorial definition to prove the… (More)

We define a generic algorithmic framework to prove pure discrete spectrum for the substitutive symbolic dynamical systems associated with some infinite families of Pisot substitutions. We focus on the families obtained as finite products of the three-letter substitutions associated with the multidimensional continued fraction algorithms of Brun and… (More)

Multidimensional combinatorial substitutions are rules that replace symbols by finite patterns of symbols in Z d. We focus on the case where the patterns are not necessarily rectangular, which requires a specific description of the way they are glued together in the image by a substitution. Two problems can arise when defining a substitution in such a way:… (More)

We study the decidability of some properties of self-affine sets specified by a graph-directed iterated function system (GIFS) with rational coefficients. We focus on topological properties and we prove that having empty interior is undecidable in dimension two. These results are obtained by studying a particular class of self-affine sets associated with… (More)

We prove that every free group of finite rank can be realized as the fundamental group of a planar Rauzy fractal associated with a 4-letter unimodular cubic Pisot substitution. This characterizes all countable fundamental groups for planar Rauzy fractals. We give an explicit construction relying on two operations on substitutions: symbolic splittings and… (More)

We prove that every free group of finite rank can be realized as the fundamental group of a planar Rauzy fractal associated with a 4-letter unimodular cubic Pisot substitution. This characterizes all countable fundamental groups for planar Rauzy fractals. We give an explicit construction relying on two operations on substitutions: symbolic splittings and… (More)