Learn More
That phosphate homeostasis is tightly linked to skeletal mineralization is probably best underscored by the fact that the phosphaturic hormone FGF23 is primarily expressed by terminally differentiated osteoblasts/osteocytes and that increased circulating FGF23 levels are causative for different types of hypophosphatemic rickets. In contrast, FGF23(More)
The hormone calcitonin (CT) is primarily known for its pharmacologic action as an inhibitor of bone resorption, yet CT-deficient mice display increased bone formation. These findings raised the question about the underlying cellular and molecular mechanism of CT action. Here we show that either ubiquitous or osteoclast-specific inactivation of the murine CT(More)
We have previously reported that the hormone calcitonin (CT) negatively regulates bone formation by inhibiting the release of sphingosine-1-phosphate from bone-resorbing osteoclasts. In the context of this study we additionally observed that CT repressed the expression of Pate4, encoding the secreted protein caltrin/Svs7, in osteoclasts from wildtype mice.(More)
Rankl, the major pro-osteoclastogenic cytokine, is synthesized as a transmembrane protein that can be cleaved by specific endopeptidases to release a soluble form (sRankl). We have previously reported that interleukin-33 (IL-33) induces expression of Tnfsf11, the Rankl-encoding gene, in primary osteoblasts, but we failed to detect sRankl in the medium.(More)
Alterations in bone remodeling are a major public health issue, as therapeutic options for widespread bone disorders such as osteoporosis and tumor-induced osteolysis are still limited. Therefore, a detailed understanding of the regulatory mechanism governing bone cell differentiation in health and disease are of utmost clinical importance. Here we report a(More)
Consistent with clinical observations demonstrating that hypervitaminosis A is associated with increased skeletal fracture risk, we have previously found that dietary retinol deprivation partially corrects the bone mineralization defects in a mouse model of X-linked hypophosphatemic rickets. That retinol-dependent signaling pathways impact the skeleton is(More)
Key metabolic hormones, such as insulin, leptin, and adiponectin, have been studied extensively in obesity, however the pathophysiologic relevance of the calcitonin family of peptides remains unclear. This family includes calcitonin (CT), its precursor procalcitonin (PCT), and alpha calcitonin-gene related peptide (αCGRP), which are all encoded by the gene(More)
  • 1