Timo Eckhard

Learn More
We have analyzed the performance of simulated multispectral systems for the spectral recovery of reflectance of printer inks from camera responses, including noise. To estimate reflectance we compared the performance of four algorithms which were not comparatively tested using the same data sets before. The criteria for selection of the algorithms were(More)
In this work, we evaluate the conditionally positive definite logarithmic kernel in kernel-based estimation of reflectance spectra. Reflectance spectra are estimated from responses of a 12-channel multispectral imaging system. We demonstrate the performance of the logarithmic kernel in comparison with the linear and Gaussian kernel using simulated and(More)
In spectral imaging, spatial and spectral information of an image scene are combined. There exist several technologies that allow the acquisition of this kind of data. Depending on the optical components used in the spectral imaging systems, misalignment between image channels can occur. Further, the projection of some systems deviates from that of a(More)
We evaluate a new 12-channel multi-spectral line scan camera system for full-width inline color measurements. The system provides full reflectance spectra for each pixel allowing for accurate color measurement with high spatial resolution. In our analysis, we performed measurements on three test-charts printed in our lab and by different offset printing(More)
Estimating spectral reflectance has attracted extensive research efforts in color science and machine learning, motivated through a wide range of applications. In many practical situations, prior knowledge is available that ought to be used. Here, we have developed a general Bayesian method that allows the incorporation of prior knowledge from previous(More)
The performance of learning-based spectral estimation is greatly influenced by the set of training samples selected to create the reconstruction model. Training sample selection schemes can be categorized into global and local approaches. Most of the previously proposed global training schemes aim to reduce the number of training samples, or a selection of(More)
  • 1