Timm Schlegelmilch

Learn More
BACKGROUND The malaria parasite Plasmodium must complete a complex developmental life cycle within Anopheles mosquitoes before it can be transmitted into the human host. One day after mosquito infection, motile ookinetes traverse the midgut epithelium and, after exiting to its basal site facing the hemolymph, develop into oocysts. Previously, we have(More)
For decades, microglia, the resident macrophages of the brain, have been recognized mostly for their role in several, if not all, pathologies affecting the brain. However, several studies under physiological conditions demonstrate that microglial function is indispensable also in the healthy brain. Indeed, microglia implement key functions already during(More)
In much of sub-Saharan Africa, the mosquito Anopheles gambiae is the main vector of the major human malaria parasite, Plasmodium falciparum. Convenient laboratory studies have identified mosquito genes that affect positively or negatively the developmental cycle of the model rodent parasite, P. berghei. Here, we use transcription profiling and reverse(More)
Migration of the protozoan parasite Plasmodium through the mosquito is a complex and delicate process, the outcome of which determines the success of malaria transmission. The mosquito is not simply the vector of Plasmodium but, in terms of the life cycle, its definitive host: there, the parasite undergoes its sexual development, which results in(More)
Malaria parasites must undergo sexual and sporogonic development in mosquitoes before they can infect their vertebrate hosts. We report the discovery and characterization of MISFIT, the first protein with paternal effect on the development of the rodent malaria parasite Plasmodium berghei in Anopheles mosquitoes. MISFIT is expressed in male gametocytes and(More)
The passage through the mosquito is a major bottleneck for malaria parasite populations and a target of interventions aiming to block disease transmission. Here, we used DNA microarrays to profile the developmental transcriptomes of the rodent malaria parasite Plasmodium berghei in vivo, in the midgut of Anopheles gambiae mosquitoes, from parasite stages in(More)
Successful completion of the Plasmodium lifecycle in the mosquito vector is critical for malaria transmission. It has been documented that the fate of Plasmodium in the mosquito ultimately depends on a fine interplay of molecular mosquito factors that act as parasite agonists and antagonists. Here we investigate whether the cellular responses of the invaded(More)
  • 1