Timm Sauer

Learn More
The problem of reconstructing and identifying intracellular protein signaling and biochemical networks is of critical importance in biology. We propose a mathematical approach called augmented sparse reconstruction for the identification of links among nodes of ordinary differential equation (ODE) networks, given a small set of observed trajectories with(More)
– Fertile land and fresh water constitute two of the most fundamental resources for food production. These resources are affected by environmental, political, economic, and technical developments. Regional impacts may transmit to the world through increased trade. With a global forest and agricultural sector model, we quantify the impacts of increased(More)
In this paper, we utilize techniques from the theory of nonlinear dynamical systems to define a notion of embedding estimators. More specifically, we use delay-coordinates embeddings of sets of coefficients of the measured signal (in some chosen frame) as a data mining tool to separate structures that are likely to be generated by signals belonging to some(More)
In a previous paper we introduced a method called augmented sparse reconstruction (ASR) that identifies links among nodes of ordinary differential equation networks, given a small set of observed trajectories with various initial conditions. The main purpose of that technique was to reconstruct intracellular protein signaling networks. In this paper we show(More)
  • 1