Learn More
We consider the problem of routing traffic to optimize the performance of a congested network. We are given a network, a rate of traffic between each pair of nodes, and a latency function for each edge specifying the time needed to traverse the edge given its congestion; the objective is to route traffic such that the sum of all travel times---the total(More)
Network design is a fundamental problem for which it is important to understand the effects of strategic behavior. Given a collection of self-interested agents who want to form a network connecting certain endpoints, the set of stable solutions - the Nash equilibria - may look quite different from the centrally enforced optimum. We study the quality of the(More)
Selfish routing is a classical mathematical model of how self-interested users might route traffic through a congested network. The outcome of selfish routing is generally inefficient, in that it fails to optimize natural objective functions. The price of anarchy is a quantitative measure of this inefficiency. We survey recent work that analyzes the price(More)
We study the degradation in network performance caused by the selfish behavior of noncooperative network users. We consider a directed network in which each edge possesses a latency function describing the common latency incurred by all traffic on the edge as a function of the edge congestion. Given a rate of traffic between each pair of nodes in the(More)
We design and analyze approximately revenue-maximizing auctions in general single-parameter settings. Bidders have publicly observable attributes, and we assume that the valuations of indistinguishable bidders are independent draws from a common distribution. Crucially, we assume all valuation distributions are a priori <i>unknown</i> to the seller. Despite(More)
We analyze the price of anarchy (POA) in a simple and practical non-truthful combinatorial auction when players have subadditive valuations for goods. We study the mechanism that sells every good in parallel with separate second-price auctions. We first prove that under a standard "no overbidding" assumption, for every subadditive valuation profile, every(More)
We study the problem of optimizing the performance of a system shared by selfish, noncooperative users. We consider the concrete setting of scheduling jobs on a set of shared machines with load-dependent latency functions specifying the length of time necessary to complete a job; we measure system performance by the <italic>total latency</italic> of the(More)
A mechanism for releasing information about a statistical database with sensitive data must resolve a trade-off between utility and privacy. Publishing fully accurate information maximizes utility while minimizing privacy, while publishing random noise accomplishes the opposite. Privacy can be rigorously quantified using the framework of <i>differential(More)