Tim P. DeMonte

Learn More
Current density imaging (CDI) is a magnetic resonance imaging (MRI) technique used to quantitatively measure current density vectors throughout the volume of an object/subject placed in the MRI system. Electrical current pulses are applied externally to the object/subject and are synchronized with the MRI sequence. In this work, CDI is used to measure(More)
Although defibrillation has been in clinical use for more than 50 years, the complete current flow distribution inside the body during a defibrillation procedure has never been directly measured. This is due to the lack of appropriate imaging technology to noninvasively monitor the current flow inside the body. The current density imaging (CDI) technique,(More)
The origin of electrical burns under gel-type surface electrodes is a controversial topic that is not well understood. To investigate the phenomenon, we have developed an excised porcine skin-gel model, and used low-frequency current density imaging (LFCDI) to determine the current density (CD) distribution through the skin before and after burns were(More)
Radio-frequency current density imaging (RF-CDI) is an imaging technique that noninvasively measures current density distribution at the Larmor frequency utilizing magnetic resonance imaging (MRI). Previously implemented RF-CDI techniques were only able to image a single slice transverse to the static magnetic field B(0) . This paper describes the first(More)
Radio-frequency current density imaging (RF-CDI) is a technique that noninvasively measures current density distributions at the Larmor frequency utilizing magnetic resonance imaging. Previously implemented RF-CDI methods reconstruct the applied current density component J(z) along the static magnetic field of the imager [(B)\vec](0) (the z direction) based(More)
Current density imaging (CDI) is an MRI technique used to measure electrical current density vectors throughout a volume of tissue. Previous work used CDI to measure current pathways through the heart and chest of a post-mortem pig when current is applied using external flexible defibrillation electrodes with typical anterior-anterior positioning. In these(More)
Current density imaging (CDI) is a technique that uses magnetic resonance imaging (MRI) to measure the distribution of externally applied electric current inside tissues. However, GDI processing is rendered inaccurate by the distortion caused by the nonlinearity of MRI gradient fields. The distortion interferes with the proper registration and the curl(More)
Radio frequency current density imaging (RF-CDI) is an imaging technique that measures current density distribution at the Larmor frequency utilizing magnetic resonance imaging (MRI). The multi-slice RF-CDI sequence has extended the ability of RF-CDI to image multiple slices and thus has enhanced its capacity for biomedical applications. In this paper, the(More)
Current density imaging (CDI) is an MRI technique used to quantitatively measure current density vectors in biological tissue. A CDI sequence and corresponding experimental method were developed for the study of human electro-muscular incapacitation (HEMI) devices using an animal model. Measurements of current density vectors were performed in piglets(More)
The origin of electrical burns under gel-type surface electrodes is a controversial topic that is not well understood. To investigate the phenomenon, we have developed an excised porcine skin+gel model. In the present paper, we describe methods to detect these burns in the skin+gel model in an effort to understand the genesis of these burns. Burns were(More)