Learn More
[1] An M w 6.5 earthquake devastated the town of Bam in southeast Iran on 26 December 2003. Surface displacements and decorrelation effects, mapped using Envisat radar data, reveal that over 2 m of slip occurred at depth on a fault that had not previously been identified. It is common for earthquakes to occur on blind faults which, despite their name,(More)
[1] One of the limitations of deformation measurements made with interferometric synthetic aperture radar (InSAR) is that an interferogram only measures one component of the surface deformation—in the satellite's line of sight. We investigate strategies for mapping surface deformation in three dimensions by using multiple interferograms, with different(More)
[1] The M w 6.6, 26 December 2003 Bam (Iran) earthquake was one of the first earthquakes for which Envisat advanced synthetic aperture radar (ASAR) data were available. Using interferograms and azimuth offsets from ascending and descending tracks, we construct a three-dimensional displacement field of the deformation due to the earthquake. Elastic(More)
Seafloor spreading centres show a regular along-axis segmentation thought to be produced by a segmented magma supply in the passively upwelling mantle. On the other hand, continental rifts are segmented by large offset normal faults, and many lack magmatism. It is unclear how, when and where the ubiquitous segmented melt zones are emplaced during the(More)
Studies of interseismic strain accumulation are crucial to our understanding of continental deformation, the earthquake cycle and seismic hazard. By mapping small amounts of ground deformation over large spatial areas, InSAR has the potential to produce continental-scale maps of strain accumulation on active faults. However, most InSAR studies to date have(More)
Two contrasting views of the active deformation of Asia dominate the debate about how continents deform: (i) The deformation is primarily localized on major faults separating crustal blocks or (ii) deformation is distributed throughout the continental lithosphere. In the first model, western Tibet is being extruded eastward between the major faults bounding(More)
Using SAR interferometry (InSAR), the deformation field of the M w =6.6, 1998 Aiquile, Bolivia earthquake is mapped, and the epicentre accurately located for the first time. Elastic dislocation modelling is used to demonstrate that the measured displacements are best explained with a ~N–S oriented fault, with a strike that is oblique to the principal(More)
[1] Local and regional seismic data constrain the space-time history of deformation and likely magma sources for the September 2005 diking episode in the Manda-Harraro rift zone of the Afar depression. The results distinguish three centers from which subhorizontal dike propagation progressed: two distinct sources around the Dabbahu-Gab'ho Volcanic Complex(More)
The M w 7.9, Denali fault earthquake (DFE) is the largest continental strike-slip earthquake to occur since the development of Interferometric Synthetic Aperture Radar (InSAR). We use five interferograms, constructed using radar images from the Canadian Radarsat-1 satellite, to map the surface deformation at the western end of the fault rupture. Additional(More)
[1] The 23 October 2002 Nenana Mountain Earthquake (M w $ 6.7) occurred on the Denali Fault (Alaska), to the west of the M w $ 7.9 Denali Earthquake that ruptured the same fault 11 days later. We used 6 interferograms, constructed using radar images from the Canadian Radarsat-1 and European ERS-2 satellites, to determine the coseismic surface deformation(More)