Learn More
The lack of an adequate hominid fossil record in eastern Africa between 2 and 3 million years ago (Ma) has hampered investigations of early hominid phylogeny. Discovery of 2.5 Ma hominid cranial and dental remains from the Hata beds of Ethiopia's Middle Awash allows recognition of a new species of Australopithecus. This species is descended from(More)
Seventeen hominoid fossils recovered from Pliocene strata at Aramis, Middle Awash, Ethiopia make up a series comprising dental, cranial and postcranial specimens dated to around 4.4 million years ago. When compared with Australopithecus afarensis and with modern and fossil apes the Aramis fossil hominids are recognized as a new species of(More)
The Hata Member of the Bouri Formation is defined for Pliocene sedimentary outcrops in the Middle Awash Valley, Ethiopia. The Hata Member is dated to 2.5 million years ago and has produced a new species of Australopithecus and hominid postcranial remains not currently assigned to species. Spatially associated zooarchaeological remains show that hominids(More)
The origin of anatomically modern Homo sapiens and the fate of Neanderthals have been fundamental questions in human evolutionary studies for over a century. A key barrier to the resolution of these questions has been the lack of substantial and accurately dated African hominid fossils from between 100,000 and 300,000 years ago. Here we describe fossilized(More)
Hominid fossils predating the emergence of Australopithecus have been sparse and fragmentary. The evolution of our lineage after the last common ancestor we shared with chimpanzees has therefore remained unclear. Ardipithecus ramidus, recovered in ecologically and temporally resolved contexts in Ethiopia's Afar Rift, now illuminates earlier hominid(More)
Genomic comparisons have established the chimpanzee and bonobo as our closest living relatives. However, the intricacies of gene regulation and expression caution against the use of these extant apes in deducing the anatomical structure of the last common ancestor that we shared with them. Evidence for this structure must therefore be sought from the fossil(More)
Over 200 hominid specimens were recovered by the International Omo Expedition of 1967-1976. Despite the fragmentary nature of this primarily dental collection, these hominid remains represent a major body of evidence about hominid evolution in eastern Africa during the 2-3 myr time period. Our analysis of the Omo dental collection is based on a large(More)
The Ardipithecus ramidus hand and wrist exhibit none of the derived mechanisms that restrict motion in extant great apes and are reminiscent of those of Miocene apes, such as Proconsul. The capitate head is more palmar than in all other known hominoids, permitting extreme midcarpal dorsiflexion. Ar. ramidus and all later hominids lack the carpometacarpal(More)
Several elements of the Ardipithecus ramidus foot are preserved, primarily in the ARA-VP-6/500 partial skeleton. The foot has a widely abducent hallux, which was not propulsive during terrestrial bipedality. However, it lacks the highly derived tarsometatarsal laxity and inversion in extant African apes that provide maximum conformity to substrates during(More)
Sedimentary deposits in the Middle Awash research area of Ethiopia's Afar depression have yielded vertebrate fossils including the most ancient hominids known. Radioisotopic dating, geochemical analysis of interbedded volcanic ashes and biochronological considerations place the hominid-bearing deposits at around 4.4 million years of age. Sedimentological,(More)