Tilottama Roy

  • Citations Per Year
Learn More
Asymmetrical gene flow, which has frequently been documented in naturally occurring hybrid zones, can result from various genetic and demographic factors. Understanding these factors is important for determining the ecological conditions that permitted hybridization and the evolutionary potential inherent in hybrids. Here, we characterized morphological,(More)
Due to its unique geological history and isolated location, the Hawaiian Archipelago provides an ideal setting for studies on biogeography, phylogeny and population biology. Species richness in these islands has been attributed to unique colonization events. The Hawaiian mints comprising of three endemic genera represent one of the largest radiations in the(More)
PREMISE OF THE STUDY Lamioideae, one of the most species-rich subfamilies within Lamiaceae, exhibits a remarkable diversity in morphology and habit and is found in many temperate to subtropical regions across the globe. Previous studies based on chloroplast DNA (cpDNA) sequence data produced a tribal classification of Lamioideae, but so far this has not(More)
The subfamily Lamioideae (Lamiaceae) comprises ten tribes, of which only Stachydeae and Synandreae include New World members. Previous studies have investigated the phylogenetic relationships among the members of Synandreae based on plastid and nuclear ribosomal DNA loci. In an effort to re-examine the phylogenetic relationships within Synandreae, the(More)
The phenomenon of polyploidy and hybridization usually results in novel genetic combinations, leading to complex, reticulate evolution and incongruence among gene trees, which in turn may show different phylogenetic histories than the inherent species tree. The largest tribe within the subfamily Lamioideae (Lamiaceae), Stachydeae, which includes the(More)
The population size of Atlantic walruses (Odobenus rosmarus rosmarus) is depleted relative to historical abundance levels. In Svalbard, centuries of over-exploitation brought the walrus herds to the verge of extinction, and such bottlenecks may have caused loss of genetic variation. To address this for Svalbard walruses, mitochondrial haplotypes of(More)
  • 1