Learn More
Microbial secondary metabolites are a potent source of antibiotics and other pharmaceuticals. Genome mining of their biosynthetic gene clusters has become a key method to accelerate their identification and characterization. In 2011, we developed antiSMASH, a web-based analysis platform that automates this process. Here, we present the highly improved(More)
Microbial secondary metabolism constitutes a rich source of antibiotics, chemotherapeutics, insecticides and other high-value chemicals. Genome mining of gene clusters that encode the biosynthetic pathways for these metabolites has become a key methodology for novel compound discovery. In 2011, we introduced antiSMASH, a web server and stand-alone tool for(More)
Bacterial and fungal secondary metabolism is a rich source of novel bioactive compounds with potential pharmaceutical applications as antibiotics, anti-tumor drugs or cholesterol-lowering drugs. To find new drug candidates, microbiologists are increasingly relying on sequencing genomes of a wide variety of microbes. However, rapidly and reliably pinpointing(More)
The products of many bacterial non-ribosomal peptide synthetases (NRPS) are highly important secondary metabolites, including vancomycin and other antibiotics. The ability to predict substrate specificity of newly detected NRPS Adenylation (A-) domains by genome sequencing efforts is of great importance to identify and annotate new gene clusters that(More)
BACKGROUND Non-ribosomal peptide synthetases (NRPSs) are large multimodular enzymes that synthesize a wide range of biologically active natural peptide compounds, of which many are pharmacologically important. Peptide bond formation is catalyzed by the Condensation (C) domain. Various functional subtypes of the C domain exist: An LCL domain catalyzes a(More)
We present a new support vector machine (SVM)-based approach to predict the substrate specificity of subtypes of a given protein sequence family. We demonstrate the usefulness of this method on the example of aryl acid-activating and amino acid-activating adenylation domains (A domains) of nonribosomal peptide synthetases (NRPS). The residues of gramicidin(More)
Pristinamycin, produced by Streptomyces pristinaespiralis Pr11, is a streptogramin antibiotic consisting of two chemically unrelated compounds, pristinamycin I and pristinamycin II. The semi-synthetic derivatives of these compounds are used in human medicine as therapeutic agents against methicillin-resistant Staphylococcus aureus strains. Only the partial(More)
Lanthipeptides are a class of ribosomally synthesised and post-translationally modified peptide (RiPP) natural products from the bacterial secondary metabolism. Their name is derived from the characteristic lanthionine or methyl-lanthionine residues contained in the processed peptide. Lanthipeptides that possess an antibacterial activity are called(More)
The synapsins constitute a family of synaptic vesicle-associated phosphoproteins essential for regulating neurotransmitter release and synaptogenesis. The molecular mechanisms underlying the selective targeting of synapsin I to synaptic vesicles are thought to involve specific protein-protein interactions, while the high-affinity binding to the synaptic(More)
We report the draft genome sequence of Microbispora sp. strain ATCC-PTA-5024, a soil isolate that produces NAI-107, a new lantibiotic with the potential to treat life-threatening infections caused by multidrug-resistant Gram-positive pathogens. The draft genome of strain Microbispora sp. ATCC-PTA-5024 consists of 8,543,819 bp, with a 71.2% G+C content and(More)