Learn More
Microbial secondary metabolism constitutes a rich source of antibiotics, chemotherapeutics, insecticides and other high-value chemicals. Genome mining of gene clusters that encode the biosynthetic pathways for these metabolites has become a key methodology for novel compound discovery. In 2011, we introduced antiSMASH, a web server and stand-alone tool for(More)
Microbial secondary metabolites are a potent source of antibiotics and other pharmaceuticals. Genome mining of their biosynthetic gene clusters has become a key method to accelerate their identification and characterization. In 2011, we developed antiSMASH, a web-based analysis platform that automates this process. Here, we present the highly improved(More)
Bacterial and fungal secondary metabolism is a rich source of novel bioactive compounds with potential pharmaceutical applications as antibiotics, anti-tumor drugs or cholesterol-lowering drugs. To find new drug candidates, microbiologists are increasingly relying on sequencing genomes of a wide variety of microbes. However, rapidly and reliably pinpointing(More)
BACKGROUND Non-ribosomal peptide synthetases (NRPSs) are large multimodular enzymes that synthesize a wide range of biologically active natural peptide compounds, of which many are pharmacologically important. Peptide bond formation is catalyzed by the Condensation (C) domain. Various functional subtypes of the C domain exist: An LCL domain catalyzes a(More)
We present a new support vector machine (SVM)-based approach to predict the substrate specificity of subtypes of a given protein sequence family. We demonstrate the usefulness of this method on the example of aryl acid-activating and amino acid-activating adenylation domains (A domains) of nonribosomal peptide synthetases (NRPS). The residues of gramicidin(More)
The products of many bacterial non-ribosomal peptide synthetases (NRPS) are highly important secondary metabolites, including vancomycin and other antibiotics. The ability to predict substrate specificity of newly detected NRPS Adenylation (A-) domains by genome sequencing efforts is of great importance to identify and annotate new gene clusters that(More)
Lanthipeptides are a class of ribosomally synthesised and post-translationally modified peptide (RiPP) natural products from the bacterial secondary metabolism. Their name is derived from the characteristic lanthionine or methyl-lanthionine residues contained in the processed peptide. Lanthipeptides that possess an antibacterial activity are called(More)
Bacteria of the order Actinomycetales are one of the most important sources of pharmacologically active and industrially relevant secondary metabolites. Unfortunately, many of them are still recalcitrant to genetic manipulation, which is a bottleneck for systematic metabolic engineering. To facilitate the genetic manipulation of actinomycetes, we developed(More)
Polyketide synthases construct polyketides with diverse structures and biological activities via the condensation of extender units and acyl thioesters. Although a growing body of evidence suggests that polyketide synthases might be tolerant to non-natural extender units, in vitro and in vivo studies aimed at probing and utilizing polyketide synthase(More)
Pristinamycin, produced by Streptomyces pristinaespiralis Pr11, is a streptogramin antibiotic consisting of two chemically unrelated compounds, pristinamycin I and pristinamycin II. The semi-synthetic derivatives of these compounds are used in human medicine as therapeutic agents against methicillin-resistant Staphylococcus aureus strains. Only the partial(More)