Learn More
The crystal structure of a recombinant polyomavirus VP1 pentamer (residues 32-320) in complex with a branched disialylated hexasaccharide receptor fragment has been determined at 1.9 A resolution. The result extends our understanding of oligosaccharide receptor recognition. It also suggests a mechanism for enhancing the fidelity of virus assembly. We have(More)
Measles virus is a paramyxovirus which, like other members of the family such as respiratory syncytial virus, is a major cause of morbidity and mortality worldwide. The cell surface receptor for measles virus in humans is CD46, a complement cofactor. We report here the crystal structure at 3.1 A resolution of the measles virus-binding fragment of CD46. The(More)
BACKGROUND Murine polyomavirus recognizes (alpha2,3)-linked alpha-5-N-acetylneuraminic acid (sialic acid) on the surface of susceptible cells. While all strains bind to straight-chain receptors terminating in (alpha2,3)-linked sialic acid, some strains also bind to branched oligosaccharides that carry a second, (alpha2,6)-linked sialic acid. The ability to(More)
BACKGROUND The structure of simian virus 40 (SV40), previously determined at 3.8 degree resolution, shows how its pentameric VP1 assembly units are tied together by extended C-terminal arms. In order to define more precisely the possible assembly mechanisms, we have refined the structure at 3.1 degree resolution. RESULTS New data from a high-intensity(More)
The 3.0-A structure of a 190-residue fragment of intercellular adhesion molecule-1 (ICAM-1, CD54) reveals two tandem Ig-superfamily (IgSF) domains. Each of two independent molecules dimerizes identically with a symmetry-related molecule over a hydrophobic interface on the BED sheet of domain 1, in agreement with dimerization of ICAM-1 on the cell surface.(More)
A complex of the polyomavirus internal protein VP2/VP3 with the pentameric major capsid protein VP1 has been prepared by co-expression in Escherichia coli. A C-terminal segment of VP2/VP3 is required for tight association, and a crystal structure of this segment, complexed with a VP1 pentamer, has been determined at 2.2 A resolution. The structure shows(More)
Variations in the polyomavirus major capsid protein VP1 underlie important biological differences between highly pathogenic large-plaque and relatively nonpathogenic small-plaque strains. These polymorphisms constitute major determinants of virus spread in mice and also dictate previously recognized strain differences in sialyloligosaccharide binding. X-ray(More)
BACKGROUND Simian virus 40 (SV40) and murine polyomavirus (polyoma) are non-enveloped DNA tumor viruses. Their structurally similar capsids, about 500 degrees in diameter, are formed by 72 pentamers of the major coat protein VP1. RESULTS We describe in this paper the structure determination of SV40 and polyoma at 3.8 degree resolution, focusing(More)
Vascular cell adhesion molecule 1 (VCAM-1) represents a structurally and functionally distinct class of immunoglobulin superfamily molecules that bind leukocyte integrins and are involved in inflammatory and immune functions. X-ray crystallography defines the three-dimensional structure of the N-terminal two-domain fragment that participates in ligand(More)
The polyomaviruses are non-enveloped, icosahedrally symmetrical particles with circular double-stranded DNA genomes. The outer shell of the virion contains 360 copies of viral protein VP1 (M(r) approximately 42K) arranged in pentamers. We report here the structure at 3.65 A resolution of murine polyomavirus ('polyoma') complexed with an oligosaccharide(More)