Learn More
In atomic physics, the coherent coupling of a broad and a narrow resonance leads to quantum interference and provides the general recipe for electromagnetically induced transparency (EIT). A sharp resonance of nearly perfect transmission can arise within a broad absorption profile. These features show remarkable potential for slow light, novel sensors and(More)
We report on the generation of a Bose-Einstein condensate in a gas of chromium atoms, which have an exceptionally large magnetic dipole moment and therefore underlie anisotropic long-range interactions. The preparation of the chromium condensate requires novel cooling strategies that are adapted to its special electronic and magnetic properties. The final(More)
We report on strong van der Waals blockade in two-photon Rydberg excitation of ultracold magnetically trapped 87Rb atoms. The excitation dynamics was investigated for a large range of densities and laser intensities and shows a full saturation and a strong suppression with respect to single-atom behavior. The observed scaling of the initial increase with(More)
We study the appearance of correlated many-body phenomena in an ensemble of atoms driven resonantly into a strongly interacting Rydberg state. The ground state of the Hamiltonian describing the driven system exhibits a second order quantum phase transition. We derive the critical theory for the quantum phase transition and show that it describes the(More)
When ground state atoms are excited to a Rydberg state, van der Waals interactions among them can lead to a strong suppression of the excitation. Despite the strong interactions the evolution can still be reversed by a simple phase shift in the excitation laser field. We experimentally prove the coherence of the excitation in the strong blockade regime by(More)
Rydberg atoms have an electron in a state with a very high principal quantum number, and as a result can exhibit unusually long-range interactions. One example is the bonding of two such atoms by multipole forces to form Rydberg-Rydberg molecules with very large internuclear distances. Notably, bonding interactions can also arise from the low-energy(More)
We have observed Feshbach resonances in collisions between ultracold 52Cr atoms. This is the first observation of collisional Feshbach resonances in an atomic species with more than one valence electron. The zero nuclear spin of 52Cr and thus the absence of a Fermi-contact interaction leads to regularly spaced resonance sequences. By comparing resonance(More)
In a combined experimental and theoretical effort we report on two novel types of ultracold long-range Rydberg molecules. First, we demonstrate the creation of triatomic molecules of one Rydberg atom and two ground-state atoms in a single-step photoassociation. Second, we assign a series of excited dimer states that are bound by a so far unexplored(More)
REASONS FOR PERFORMING STUDY Assessing back movement is an important part of clinical examination in the horse and objective assessment tools allow for evaluating success of treatment. OBJECTIVES Accuracy and consistency of inertial sensor measurements for quantification of back movement and movement symmetry during over ground locomotion were assessed;(More)
We have investigated the expansion of a Bose-Einstein condensate of strongly magnetic chromium atoms. The long-range and anisotropic magnetic dipole-dipole interaction leads to an anisotropic deformation of the expanding chromium condensate which depends on the orientation of the atomic dipole moments. Our measurements are consistent with the theory of(More)