Tiina Seppälä

Learn More
PURPOSE To investigate the efficacy and safety of boron neutron capture therapy (BNCT) in the treatment of inoperable head-and-neck cancers that recur locally after conventional photon radiation therapy. METHODS AND MATERIALS In this prospective, single-center Phase I/II study, 30 patients with inoperable, locally recurred head-and-neck cancer (29(More)
PURPOSE To investigate the safety of boronophenylalanine-mediated boron neutron capture therapy (BNCT) in the treatment of malignant gliomas that progress after surgery and conventional external beam radiation therapy. METHODS AND MATERIALS Adult patients who had histologically confirmed malignant glioma that had progressed after surgery and external beam(More)
Two clinical trials are currently running at the Finnish dedicated boron neutron capture therapy (BNCT) facility. Between May 1999 and December 2001, 18 patients with supratentorial glioblastoma were treated with boronophenylalanine (BPA)-based BNCT within a context of a prospective clinical trial (protocol P-01). All patients underwent prior surgery, but(More)
The meaningful sharing and combining of clinical results from different centers in the world performing boron neutron capture therapy (BNCT) requires improved precision in dose specification between programs. To this end absorbed dose normalizations were performed for the European clinical centers at the Joint Research Centre of the European Commission,(More)
The epithermal neutron beam model of the Finnish boron neutron capture therapy (BNCT) facility (FiR 1) was created using the two-dimensional (2D) discrete ordinates transport (DORT) code. The final design of the beam was achieved using the DORT model: the optimal thickness of the neutron moderator and the length and the thickness of the bismuth collimator(More)
The potential efficacy of boron neutron capture therapy (BNCT) for malignant glioma is a significant function of epithermal-neutron beam biophysical characteristics as well as boron compound biodistribution characteristics. Monte Carlo analyses were performed to evaluate the relative significance of these factors on theoretical tumor control using a(More)
PURPOSE Head and neck carcinomas that recur locally after conventional irradiation pose a difficult therapeutic problem. We evaluated safety and efficacy of boron neutron capture therapy (BNCT) in the treatment of such cancers. METHODS AND MATERIALS Twelve patients with inoperable, recurred, locally advanced (rT3, rT4, or rN2) head and neck cancer were(More)
PURPOSE The lack of electron density information in magnetic resonance images (MRI) poses a major challenge for MRI-based radiotherapy treatment planning (RTP). In this study the authors convert MRI intensity values into Hounsfield units (HUs) in the male pelvis and thus enable accurate MRI-based RTP for prostate cancer patients with varying tissue anatomy(More)
In radiotherapy, target tissues are defined best on MR images due to their superior soft tissue contrast. Computed tomography imaging is geometrically accurate and it is needed for dose calculation and generation of reference images for treatment localization. Co-registration errors between MR and computed tomography images can be eliminated using magnetic(More)