Tiffany M. Maisonet

Learn More
PURPOSE/AIM The alveolar epithelium participates in host defense through inflammatory pathways that activate NF-κB. Lung infections involving endotoxins trigger acute respiratory distress syndrome (ARDS) in adult and pediatric patients. The purpose of this study was to test the hypothesis that overexpression of NF-κB would worsen and conditional deletion of(More)
Alveolar development comprises the transition of lung architecture from saccules to gas-exchange units during late gestation and early postnatal development. Exposure to hyperoxia disrupts developmental signaling pathways and causes alveolar hypoplasia as seen in bronchopulmonary dysplasia affecting preterm human newborns. Expanding literature suggests that(More)
BACKGROUND Caffeine is a nonspecific adenosine receptor antagonist used in premature neonates to treat apnea of prematurity. While its use may reduce the incidence of bronchopulmonary dysplasia (BPD), the precise mechanisms remain unknown. Evidence of increased adenosine levels are noted in chronic lung diseases including tracheal aspirates of infants with(More)
BACKGROUND Alveolar septation marks the beginning of the transition from the saccular to alveolar stage of lung development. Inflammation can disrupt this process and permanently impair alveolar formation resulting in alveolar hypoplasia as seen in bronchopulmonary dysplasia in preterm newborns. NF-κB is a transcription factor central to multiple(More)
Alveolar formation is hallmarked by the transition of distal lung saccules into gas exchange units through the emergence of secondary crests and an exponential increase in surface area. Several cell types are involved in this complex process, including families of epithelial cells that differentiate into alveolar type I and II cells. Subsets of cells(More)
Infants born with intrauterine growth retardation (IUGR) are at increased risk of adverse pulmonary outcomes at birth, including meconium aspiration and persistent pulmonary hypertension. Preterm infants with IUGR are at especially high risk of developing bronchopulmonary dysplasia (BPD), a disease hallmarked by alveolar hypoplasia. Although vitamin A(More)
Oxidative damage plays a causative role in many diseases, and DNA-protein cross-linking is one important consequence of such damage. It is known that GG and GGG sites are particularly prone to one-electron oxidation, and here we examined how the local DNA sequence influences the formation of DNA-protein cross-links induced by guanine oxidation. Oxidative(More)
  • 1