Tiffany L. Thai

Learn More
The enzyme ADP-ribosyl (ADPR) cyclase plays a significant role in mediating increases in renal afferent arteriolar cytosolic calcium concentration ([Ca(2+)](i)) in vitro and renal vasoconstriction in vivo. ADPR cyclase produces cyclic ADP ribose, a second messenger that contributes importantly to ryanodine receptor-mediated Ca(2+) mobilization in renal(More)
N-methyl-D-aspartate receptors (NMDARs) are Ca(2+)-permeable, ligand-gated, nonselective cation channels that function as neuronal synaptic receptors but which are also expressed in multiple peripheral tissues. Here, we show for the first time that NMDAR subunits NR3a and NR3b are highly expressed in the neonatal kidney and that there is continued(More)
ADP-ribosyl cyclase (ADPR cyclase) and ryanodine receptors (RyR) participate in calcium transduction in isolated afferent arterioles. We hypothesized that this signaling pathway is activated by ETA and ETB receptors in the renal vasculature to mediate vasoconstriction in vivo. To test this, we measured acute renal blood flow (RBF) responses to ET-1 in(More)
Regulation of water and urea transport in the inner medullary collecting duct is essential for urine concentration. Aquaporin (AQP)2 water channels and urea transporter (UT)-A1 are inserted into the apical membrane upon phosphorylation of the channels to allow the transcellular movement of water and urea. Since ANG II activates PKC in many cell types, we(More)
Hypertension is a leading cause of morbidity and mortality worldwide, and disordered sodium balance has long been implicated in its pathogenesis. Aldosterone is perhaps the key regulator of sodium balance and thus blood pressure. The sodium chloride cotransporter (NCC) in the distal convoluted tubule of the kidney is a major site of sodium reabsorption and(More)
Clinical evidence suggests that statins reduce cancer incidence and mortality. However, there is lack of in vitro data to show the mechanism by which statins can reduce the malignancies of cancer cells. We used a human B lymphoma Daudi cells as a model and found that lovastatin inhibited, whereas exogenous cholesterol (Cho) stimulated, proliferation cell(More)
An important role for the enzyme ADP-ribosyl cyclase (ADPR cyclase) and its downstream targets, the ryanodine receptors (RyR), is emerging for a variety of vascular systems. We hypothesized that the ADPR cyclase/RyR pathway contributes to regulation of renal vasomotor tone in vivo. To test this, we continuously measured renal blood flow (RBF) in(More)
The epithelial Na channel (ENaC) is negatively regulated by protein kinase C (PKC) as shown using PKC activators in a cell culture model. To determine whether PKCα influences ENaC activity in vivo, we examined the regulation of ENaC in renal tubules from PKCα⁻/⁻ mice. Cortical collecting ducts were dissected and split open, and the exposed principal cells(More)
ADP ribosyl (ADPR) cyclases comprise a family of ectoenzymes recently shown to influence cytosolic Ca(2+) concentration in a variety of cell types. At least two ADPR cyclase family members have been identified in mammals: CD38 and CD157. We recently found reduced renal vascular reactivity to angiotensin II (ANG II), endothelin-1 (ET-1), and norepinephrine(More)
The polarized nature of epithelial cells allows for different responses to luminal or serosal stimuli. In kidney tubules, ATP is produced luminally in response to changes in luminal flow. Luminal increases in ATP have been previously shown to inhibit the renal epithelial Na⁺ channel (ENaC). On the other hand, ATP is increased basolaterally in renal(More)