Learn More
When cells encounter substantial DNA damage, critical cell cycle events are halted while DNA repair mechanisms are activated to restore genome integrity. Genomic integrity also depends on proper assembly and function of the bipolar mitotic spindle, which is required for equal chromosome segregation. Failure to execute either of these processes leads to(More)
AIMS NIMA-related kinase 2 (Nek2) and β-catenin are important centrosome regulatory factors. The aim of this study was to detect the possible disparity in their expression among normal breast tissue, invasive ductal carcinoma (IDC), concomitant ductal carcinoma in situ (DCIS), and pure DCIS, and to explore its correlation with clinicopathological factors.(More)
P16(INK4a) is a tumor suppressor gene frequently inactivated by aberrant promoter hypermethylation. In this study, p16(INK4a) methylation was evaluated in intraductal proliferative lesions of the breast, using real-time quantitative polymerase chain reaction (MethyLight) and methylation-sensitive restriction endonuclease polymerase chain reaction.(More)
Aggressive tumor cells can mimic embryonic vasculogenic networks and form vasculogenic mimicry (VM). Preliminary studies demonstrated that hypoxia can promote VM formation; however, the underlying mechanism remains unclear. The present study aimed to investigate the role of the Twist1‑Bmi1 connection in hypoxia‑induced VM formation and the underlying(More)
Centrosomal abnormalities have been found in various cancer types. We sought to determine whether centrosomal dysfunctions occur in the atypical ductal hyperplasia (ADH)-carcinoma sequence of breast cancer. As alpha and gamma-tubulins are the structural components of centrosomes, we performed real time quantitative polymerase chain reaction (qPCR), in situ(More)
To evaluate the prognostic value of OCT4 expression and vasculogenic mimicry (VM) in human breast cancer, we examined OCT4 expression and VM formation using immunohistochemistry and CD31/PAS (periodic acid-schiff) double staining on 90 breast cancer specimens. All patients were followed up for five-149 months following surgery. Survival curves were(More)
Vasculogenic mimicry (VM) refers to the unique capability of aggressive tumour cells to mimic the pattern of embryonic vasculogenic networks. Epithelial-mesenchymal transition (EMT) regulator slug have been implicated in the tumour invasion and metastasis of human hepatocellular carcinoma (HCC). However, the relationship between slug and VM formation is not(More)
Vasculogenic mimicry (VM) refers to the condition in which tumour cells mimic endothelial cells to form extracellular matrix-rich tubular channels. VM is more extensive in more aggressive tumours. The human epidermal growth factor receptor 2 (HER2) gene is amplified in 20-30% of human breast cancers and has been implicated in mediating aggressive tumour(More)
Vasculogenic mimicry (VM), a newly defined pattern of tumor blood supply, describes the functional plasticity of aggressive cancer cells that form vascular networks. In our previous study, breast cancer stem cells (CSC) were shown to potentially participate in VM formation. In this study, breast CSCs presented centrosome amplification (CA) phenotype and(More)
Transcription factor Slug plays an important role in the tumor invasion and metastasis of human hepatocellular carcinoma (HCC). This study aimed to explore the mechanism involved in the promotion of HCC progression by Slug. In the precent study, we demonstrated that Slug expression was significantly associated with metastasis and shorter survival time of(More)