Learn More
The possibility of cloaking an object from detection by electromagnetic waves has recently become a topic of considerable interest. The design of a cloak uses transformation optics, in which a conformal coordinate transformation is applied to Maxwell's equations to obtain a spatially distributed set of constitutive parameters that define the cloak. Here, we(More)
  • Citation Qiu, Li Chengwei, Baile Hu, Bae-Ian Zhang, Steven G Wu, John D Johnson +75 others
  • 2009
Spherical cloaking using nonlinear transformations for improved segmentation into concentric isotropic coatings. Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this(More)
Since invisibility cloaks were first suggested by transformation optics theory, there has been much work on the theoretical analysis and design of various types and a few experimental verifications at microwave and optical frequencies within two-dimensional limits. Here, we realize the first practical implementation of a fully 3D broadband and low-loss(More)
Silveirinha and Engheta have recently proposed that electromagnetic waves can tunnel through a material with an electric permittivity (epsilon) near zero (ENZ). An ENZ material of arbitrary geometry can thus serve as a perfect coupler between incoming and outgoing waveguides with identical cross-sectional area, so long as one dimension of the ENZ is(More)
Recently, invisible cloaks have attracted much attention due to their exciting property of invisibility, which are based on a solid theory of transformation optics and quasi-conformal mapping. Two kinds of cloaks have been proposed: free-space cloaks, which can render objects in free space invisible to incident radiation, and carpet cloaks (or ground-plane(More)