Learn More
Major efforts to sequence cancer genomes are now occurring throughout the world. Though the emerging data from these studies are illuminating, their reconciliation with epidemiologic and clinical observations poses a major challenge. In the current study, we provide a mathematical model that begins to address this challenge. We model tumors as a discrete(More)
Metastasis, the dissemination and growth of neoplastic cells in an organ distinct from that in which they originated, is the most common cause of death in cancer patients. This is particularly true for pancreatic cancers, where most patients are diagnosed with metastatic disease and few show a sustained response to chemotherapy or radiation therapy. Whether(More)
We study simple interacting particle systems on heterogeneous networks, including the voter model and the invasion process. These are both two-state models in which in an update event an individual changes state to agree with a neighbor. For the voter model, an individual "imports" its state from a randomly chosen neighbor. Here the average time TN to reach(More)
Cancer results from genetic alterations that disturb the normal cooperative behavior of cells. Recent high-throughput genomic studies of cancer cells have shown that the mutational landscape of cancer is complex and that individual cancers may evolve through mutations in as many as 20 different cancer-associated genes. We use data published by Sjöblom et(More)
We show that the times separating the birth of benign, invasive, and metastatic tumor cells can be determined by analysis of the mutations they have in common. When combined with prior clinical observations, these analyses suggest the following general conclusions about colorectal tumorigenesis: (i) It takes approximately 17 years for a large benign tumor(More)
Evolutionary dynamics shape the living world around us. At the centre of every evolutionary process is a population of reproducing individuals. The structure of that population affects evolutionary dynamics. The individuals can be molecules, cells, viruses, multicellular organisms or humans. Whenever the fitness of individuals depends on the relative(More)
A stochastic evolutionary dynamics of two strategies given by 2x 2 matrix games is studied in finite populations. We focus on stochastic properties of fixation: how a strategy represented by a single individual wins over the entire population. The process is discussed in the framework of a random walk with site dependent hopping rates. The time of fixation(More)
The emergence of cooperation in populations of selfish individuals is a fascinating topic that has inspired much work in theoretical biology. Here, we study the evolution of cooperation in a model where individuals are characterized by phenotypic properties that are visible to others. The population is well mixed in the sense that everyone is equally likely(More)
In solid tumors, targeted treatments can lead to dramatic regressions, but responses are often short-lived because resistant cancer cells arise. The major strategy proposed for overcoming resistance is combination therapy. We present a mathematical model describing the evolutionary dynamics of lesions in response to treatment. We first studied 20 melanoma(More)
We study the influence of driver mutations on the spatial evolutionary dynamics of solid tumors. We start with a cancer clone that expands uniformly in three dimensions giving rise to a spherical shape. We assume that cell division occurs on the surface of the growing tumor. Each cell division has a chance to give rise to a mutation that activates an(More)