Tianzhen Zhang

Learn More
Polyploidy often confers emergent properties, such as the higher fibre productivity and quality of tetraploid cottons than diploid cottons bred for the same environments. Here we show that an abrupt five- to sixfold ploidy increase approximately 60 million years (Myr) ago, and allopolyploidy reuniting divergent Gossypium genomes approximately 1-2 Myr ago,(More)
Upland cotton is a model for polyploid crop domestication and transgenic improvement. Here we sequenced the allotetraploid Gossypium hirsutum L. acc. TM-1 genome by integrating whole-genome shotgun reads, bacterial artificial chromosome (BAC)-end sequences and genotype-by-sequencing genetic maps. We assembled and annotated 32,032 A-subgenome genes and(More)
In order to construct a saturated genetic map and facilitate marker-assisted selection (MAS) breeding, it is necessary to enhance the current reservoir of known molecular markers in Gossypium. Microsatellites or simple sequence repeats (SSRs) occur in expressed sequence tags (EST) in plants (Kantety et al., Plant Mol Biol 48:501–510, 2002). Many ESTs are(More)
The mapping of functional genes plays an important role in studies of genome structure, function, and evolution, as well as allowing gene cloning and marker-assisted selection to improve agriculturally important traits. Simple sequence repeats (SSRs) developed from expressed sequence tags (ESTs), EST-SSR (eSSR), can be employed as putative functional marker(More)
Upland cotton has the highest yield, and accounts for > 95% of world cotton production. Decoding upland cotton genomes will undoubtedly provide the ultimate reference and resource for structural, functional, and evolutionary studies of the species. Here, we employed GeneTrek and BAC tagging information approaches to predict the general composition and(More)
The improvement of cotton fiber quality has become more important because of changes in spinning technology. Stable quantitative trait loci (QTLs) for fiber quality will enable molecular marker-assisted selection to improve fiber quality of future cotton cultivars. A simple sequence repeat (SSR) genetic linkage map consisting of 156 loci covering 1,024.4 cM(More)
The improvement of cotton fiber quality is extremely important because of changes in spinning technology. The identification of the stable QTLs affecting fiber traits across different generations will be greatly helpful to be used effectively in molecular marker-assisted selection to improve fiber quality of cotton cultivars in the future. Using three elite(More)
Verticillium wilt is a destructive disease with international consequences for cotton production. Breeding broad-spectrum resistant cultivars is considered to be one of the most effective means for reducing crop losses. A resistant cotton cultivar, 60182, was crossed with a susceptible cultivar, Junmian 1, to identify markers for Verticillium resistance(More)
Cotton is the world's leading cash crop, and genetic improvement of fiber yield and quality is the primary objective of cotton breeding program. In this study, we used various approaches to identify QTLs related to fiber yield and quality. Firstly, we constructed a four-way cross (4WC) mapping population with four base core cultivars, Stoneville 2B, Foster(More)