Learn More
Millimeter wave (mmWave) holds promise as a carrier frequency for fifth generation cellular networks. As mmWave signals are sensitive to blockage, prior microwave network models do not apply to analyze mmWave systems directly. Leveraging concepts from stochastic geometry, this paper proposes a general framework to evaluate the coverage and rate performance(More)
Large-scale blockages like buildings affect the performance of urban cellular networks, especially at higher frequencies. Unfortunately, such blockage effects are either neglected or characterized by oversimplified models in the analysis of cellular networks. Leveraging concepts from random shape theory, this paper proposes a mathematical framework to model(More)
—Cellular systems are becoming more heterogeneous with the introduction of low power nodes including femtocells, relays, and distributed antennas. Unfortunately, the resulting interference environment is also becoming more complicated, making evaluation of different communication strategies challenging in both analysis and simulation. Leveraging recent(More)
—Massive multiple-input multiple-output (MIMO) is a transmission technique for cellular systems that uses many antennas to support not-as-many users. Thus far, the performance of massive MIMO has only been examined in finite cellular networks. In this letter, we analyze its performance in random cellular networks with Poisson distributed base station(More)
This paper proposes a stochastic geometry framework to analyze the SIR and rate performance in a large-scale uplink massive MIMO network. The framework incorporates the impacts of fractional power control and spatial correlation in fading. Expressions are derived for spatial average SIR distributions over user and base station distributions with maximum(More)