Learn More
We present a new method for implicit time integration of physical systems. Our approach builds a bridge between nodal Finite Element methods and Position Based Dynamics, leading to a simple, efficient, robust, yet accurate solver that supports many different types of constraints. We propose specially designed energy potentials that can be solved efficiently(More)
BACKGROUND The telomerase reverse transcriptase (TERT) promoter mutations C228T and C250T have been found in many malignancies, including in thyroid carcinomas. However, it is unclear how early these mutations occur in thyroid tumorigenesis. METHODS The study included primary tumors from 58 patients initially diagnosed with follicular thyroid adenoma(More)
We present a new method for real-time physics-based simulation supporting many different types of hyperelastic materials. Previous methods such as Position Based or Projective Dynamics are fast, but support only limited selection of materials; even classical materials such as the Neo-Hookean elasticity are not supported. Recently, Xu et al. [2015](More)
The enhancement effect of compatible solutes on anammox activity under salinity stress was investigated. Glycine betaine (GB) was the most effective in alleviating salt toxicity, although all the compatible solutes (GB, trehalose and ectoine) were found to be valid. Acclimation potential of anammox biomass under salinity of 30 g/L increased significantly(More)
We describe a scheme for time integration of mass-spring systems that makes use of a solver based on block coordinate descent. This scheme provides a fast solution for classical linear (Hookean) springs. We express the widely used implicit Euler method as an energy minimization problem and introduce spring directions as auxiliary unknown variables. The(More)
Cache is effective in bridging the gap between processor and memory speed. It is also a source of unpredictability because of its dynamic and adaptive behavior. Worst-case execution time (WCET) of an application is one of the most important criteria for real-time embedded system design. The unpredictability of instruction miss/hit behavior in the(More)
Cache is known for its unpredictability in embedded systems. Cache locking technique is often utilized to guarantee a tighter prediction of Worst-Case Execution Time (WCET) which is one of the most important performance metrics for embedded systems. However, in Multi-Processor Systems-on-Chip (MPSoC) systems with multi-tasks, Level 2 (L2) cache is often(More)
In a multi-task embedded system, a cache is shared by different tasks, which increases the complexity of cache management and the unpredictability of cache behavior. This unpredictability in turn brings an overestimation of application’s worst-case execution time (WCET) and worst-case CPU utilization (WCU) which are two of the most important criteria for(More)
ETHNOPHARMACOLOGICAL RELEVANCE The crude secondary roots of Aconitum carmichaelii Debeaux (Fuzi), together with its processed products, including Yanfuzi, Heishunpian and Paofupian, are commonly applied in clinic using for thousands of years, such as collapse, syncope, rheumatic fever, painful joints and various tumors. AIM OF THE STUDY To explore the(More)