Learn More
Tree boosting is a highly effective and widely used machine learning method. In this paper, we describe a scalable end-to-end tree boosting system called XGBoost, which is used widely by data scientists to achieve state-of-the-art results on many machine learning challenges. We propose a novel sparsity-aware algorithm for sparse data and weighted quantile(More)
In this paper we introduce SVDFeature, a machine learning toolkit for feature-based collaborative filtering. SVDFeature is designed to efficiently solve the feature-based matrix factorization. The feature-based setting allows us to build factorization models incorporating side information such as temporal dynamics, neighborhood relationship, and(More)
Twitter has rapidly grown to a popular social network in recent years and provides a large number of real-time messages for users. Tweets are presented in chronological order and users scan the followees' timelines to find what they are interested in. However, an information overload problem has troubled many users, especially those with many followees and(More)
In this paper we investigate the performance of different types of rectified activation functions in convolutional neural network: standard rectified linear unit (ReLU), leaky rectified linear unit (Leaky ReLU), parametric rectified linear unit (PReLU) and a new ran-domized leaky rectified linear units (RReLU). We evaluate these activation function on(More)
MXNet is a multi-language machine learning (ML) library to ease the development of ML algorithms, especially for deep neural networks. Embedded in the host language, it blends declarative symbolic expression with imperative tensor computation. It offers auto differentiation to derive gradients. MXNet is computation and memory efficient and runs on various(More)
We introduce techniques for rapidly transferring the information stored in one neural net into another neural net. The main purpose is to accelerate the training of a significantly larger neural net. During real-world workflows, one often trains very many different neural networks during the experimentation and design process. This is a wasteful process in(More)
Recommender system has been more and more popular and widely used in many applications recently. The increasing information available , not only in quantities but also in types, leads to a big challenge for recommender system that how to leverage these rich information to get a better performance. Most traditional approaches try to design a specific model(More)
Matrix factorization is among the most successful techniques for collaborative filtering. One challenge of collaborative filtering is how to utilize available auxiliary information to improve prediction accuracy. In this paper, we study the problem of utilizing auxiliary information as features of factorization and propose formalizing the problem as general(More)