Learn More
α,β-Unsaturated carbonyl compounds are versatile intermediates in the synthesis of pharmaceuticals and biologically active compounds. Here, we report the discovery and application of Pd(DMSO)(2)(TFA)(2) as a catalyst for direct dehydrogenation of cyclohexanones and other cyclic ketones to the corresponding enones, using O(2) as the oxidant. The substrate(More)
We have carried out a mechanistic investigation of aerobic dehydrogenation of cyclohexanones and cyclohexenones to phenols with a Pd(TFA)2/2-dimethylaminopyridine catalyst system. Numerous experimental methods, including kinetic studies, filtration tests, Hg poisoning experiments, transmission electron microscopy, and dynamic light scattering, provide(More)
The synthetic scope and utility of Pd-catalyzed aerobic oxidation reactions has advanced significantly over the past decade, and these reactions have potential to address important green-chemistry challenges in the pharmaceutical industry. This potential has been unrealized, however, because safety concerns and process constraints hinder large-scale(More)
Palladium-catalyzed acetoxylation of allylic C-H bonds has been the subject of extensive study. These reactions proceed via allyl-palladium(II) intermediates that react with acetate to afford the allyl acetate product. Benzoquinone and molecular oxygen are two common oxidants for these reactions. Benzoquinone has been shown to promote allyl acetate(More)
The direct α, β-dehydrogenation of aldehydes and ketones represents an efficient alternative to stepwise methods to prepare enal and enone products. Here, we describe a new Pd(TFA)(2)/4,5-diazafluorenone dehydrogenation catalyst that overcomes key limitations of previous catalyst systems. The scope includes successful reactivity with pharmaceutically(More)
The dehydrogenation of cyclohexanones affords cyclohexenones or phenols via removal of 1 or 2 equiv of H2, respectively. We recently reported several Pd(II) catalyst systems that effect aerobic dehydrogenation of cyclohexanones with different product selectivities. Pd(DMSO)2(TFA)2 is unique in its high chemoselectivity for the conversion of cyclohexanones(More)
The aryl-substituted bis(imino)pyridine cobalt methyl complex, ((Mes)PDI)CoCH3 ((Mes)PDI = 2,6-(2,4,6-Me3C6H2-N═CMe)2C5H3N), promotes the catalytic dehydrogenative silylation of linear α-olefins to selectively form the corresponding allylsilanes with commercially relevant tertiary silanes such as (Me3SiO)2MeSiH and (EtO)3SiH. Dehydrogenative silylation of(More)
Recent studies have shown that Pd(DMSO)(2)(TFA)(2) (TFA = trifluoroacetate) is an effective catalyst for a number of different aerobic oxidation reactions. Here, we provide insights into the coordination of DMSO to palladium(II) in both the solid state and in solution. A crystal structure of Pd(DMSO)(2)(TFA)(2) confirms that the solid-state structure of(More)
Metal-metal bonds play a vital role in stabilizing key intermediates in bond-formation reactions. We report that binuclear benzo[h]quinoline-ligated NiII complexes, upon oxidation, undergo reductive elimination to form carbon-halogen bonds. A mixed-valent Ni(2.5+)-Ni(2.5+) intermediate is isolated. Further oxidation to NiIII , however, is required to(More)
Ni-catalyzed cross-coupling reactions have found important applications in organic synthesis. The fundamental characterization of the key steps in cross-coupling reactions, including C-C bond-forming reductive elimination, represents a significant challenge. Bimolecular pathways were invoked in early proposals, but the experimental evidence was limited. We(More)