Learn More
This paper presents a new methodology for generating and adapting octree meshes for terascale applications. Our approach combines existing methods, such as parallel octree decomposition and space-filling curves, with a set of new methods that address the special needs of parallel octree meshing. We have implemented these techniques in a parallel meshing(More)
—Mantle convection is the principal control on the thermal and geological evolution of the Earth. Mantle convection modeling involves solution of the mass, momentum , and energy equations for a viscous, creeping, incom-pressible non-Newtonian fluid at high Rayleigh and Peclet numbers. Our goal is to conduct global mantle convection simulations that can(More)
This paper presents the design, implementation, and evaluation of the etree, a database-oriented method for large out-of-core octree mesh generation. The main idea is to map an octree to a database structure and perform all octree operations by querying and updating the database. We apply two standard database techniques, the linear octree and the B-tree,(More)
For earthquake simulations to play an important role in the reduction of seismic risk, they must be capable of high resolution and high fidelity. We have developed algorithms and tools for earthquake simulation based on multiresolution hexahedral meshes. We have used this capability to carry out 1 Hz simulations of the 1994 Northridge earthquake in the LA(More)
Parallel supercomputing has traditionally focused on the inner kernel of scientific simulations: the solver. The front and back ends of the simulation pipeline---problem description and interpretation of the output---have taken a back seat to the solver when it comes to attention paid to scalability and performance, and are often relegated to offline,(More)
—As parallel algorithms and architectures drive the longest molecular dynamics (MD) simulations towards the millisecond scale, traditional sequential post-simulation data analysis methods are becoming increasingly untenable. Inspired by the programming interface of Google's MapReduce, we have built a new parallel analysis framework called HiMach, which(More)
Modern scientific applications such as fluid dynamics and earthquake modeling heavily depend on massive volumes of data produced by computer simulations. Such applications require new data management capabilities in order to scale to terabyte-scale data volumes. The most common way to discretize the application domain is to decompose it into pyramids,(More)
This report describes a library, called the etree library, that allows C programmers to manipulate large oc-trees stored on disk. Octrees are stored as a sequence of fixed sized octant records sorted by a locational code order that is equivalent to a preorder traversal of the tree and a Z-order traversal through the domain. The sorted records are indexed by(More)