#### Filter Results:

#### Publication Year

2002

2010

#### Co-author

#### Key Phrase

#### Publication Venue

Learn More

This paper presents a new methodology for generating and adapting octree meshes for terascale applications. Our approach combines existing methods, such as parallel octree decomposition and space-filling curves, with a set of new methods that address the special needs of parallel octree meshing. We have implemented these techniques in a parallel meshing… (More)

- Carsten Burstedde, Omar Ghattas, Michael Gurnis, Georg Stadler, Eh Tan, Tiankai Tu +2 others
- SC
- 2008

—Mantle convection is the principal control on the thermal and geological evolution of the Earth. Mantle convection modeling involves solution of the mass, momentum , and energy equations for a viscous, creeping, incom-pressible non-Newtonian fluid at high Rayleigh and Peclet numbers. Our goal is to conduct global mantle convection simulations that can… (More)

- Volkan Akcelik, Jacobo Bielak, George Biros, Ioannis Epanomeritakis, Antonio Fernandez, Omar Ghattas +5 others
- SC
- 2003

For earthquake simulations to play an important role in the reduction of seismic risk, they must be capable of high resolution and high fidelity. We have developed algorithms and tools for earthquake simulation based on multiresolution hexahedral meshes. We have used this capability to carry out 1 Hz simulations of the 1994 Northridge earthquake in the LA… (More)

Large datasets, on the order of GB and TB, are increasingly common as abundant computational resources allow practitioners to collect, produce and store data at higher rates. As dataset sizes grow, it becomes more challenging to interactively manipulate and analyze these datasets due to the large amounts of data that need to be moved and processed.… (More)

- Tiankai Tu, Charles A. Rendleman, David W. Borhani, Ron O. Dror, Justin Gullingsrud, Morten Ø. Jensen +5 others
- SC
- 2008

—As parallel algorithms and architectures drive the longest molecular dynamics (MD) simulations towards the millisecond scale, traditional sequential post-simulation data analysis methods are becoming increasingly untenable. Inspired by the programming interface of Google's MapReduce, we have built a new parallel analysis framework called HiMach, which… (More)

Modern scientific applications such as fluid dynamics and earthquake modeling heavily depend on massive volumes of data produced by computer simulations. Such applications require new data management capabilities in order to scale to terabyte-scale data volumes. The most common way to discretize the application domain is to decompose it into pyramids,… (More)

- Tiankai Tu, Hongfeng Yu, Jacobo Bielak, Omar Ghattas, Julio C. López, Kwan-Liu Ma +5 others
- SC
- 2006

We have developed a novel analytic capability for scientists and engineers to obtain insight from ongoing large-scale parallel unstructured mesh simulations running on thousands of processors. The breakthrough is made possible by a new approach that visualizes partial differential equation (PDE) solution data simultaneously while a parallel PDE solver… (More)

As a new generation of parallel supercomputers enables researchers to conduct scientific simulations of unprecedented scale and resolution, terabyte-scale simulation output has become increasingly commonplace. Analysis of such massive data sets is typically I/O-bound: many parallel analysis programs spend most of their execution time reading data from disk… (More)

Generating large 3D unstructured meshes with over 1 billion elements has been a challenging task. Fortunately, for a large class of applications with relatively simple geometries, unstructured octree-based hexahedral meshes provide a good compromise between adaptivity and simplicity. This paper presents recent work on how to extract hexahedral mesh… (More)