Learn More
In this paper, a multiscale convolutional network (MSCN) and graph-partitioning-based method is proposed for accurate segmentation of cervical cytoplasm and nuclei. Specifically, deep learning via the MSCN is explored to extract scale invariant features, and then, segment regions centered at each pixel. The coarse segmentation is refined by an automated(More)
Automatic localization of the standard plane containing complicated anatomical structures in ultrasound (US) videos remains a challenging problem. In this paper, we present a learning-based approach to locate the fetal abdominal standard plane (FASP) in US videos by constructing a domain transferred deep convolutional neural network (CNN). Compared with(More)
A computer-aided diagnosis (CAD) system for breast tumor based on color Doppler flow images is proposed. Our system consists of automatic segmentation, feature extraction, and classification of breast tumors. First, the B-mode grayscale image containing anatomical information was separated from a color Doppler flow image (CDFI). Second, the boundary of the(More)
Conventional interpolation algorithms for reconstructing freehand three-dimensional (3D) ultrasound data always contain speckle noises and artifacts. This paper describes a new algorithm for reconstructing regular voxel arrays with reduced speckles and preserved edges. To study speckle statistics properties including mean and variance in sequential B-mode(More)
Automation-assisted reading (AAR) techniques have the potential to reduce errors and increase productivity in cervical cancer screening. The sensitivity of AAR relies heavily on automated segmentation of abnormal cervical cells, which is handled poorly by current segmentation algorithms. In this paper, a global and local scheme based on graph cut approach(More)