Tiancai Guo

Learn More
Salicylic acid (SA), a key signaling molecule in higher plants, has been found to play a role in the response to a diverse range of phytopathogens and is essential for the establishment of both local and systemic-acquired resistance. Recent studies have indicated that SA also plays an important role in abiotic stress-induced signaling, and studies on(More)
Basic transcription factor 3 (BTF3), the β-subunit of the nascent polypeptide-associated complex, is responsible for the transcriptional initiation of RNA polymerase II and is also involved in cell apoptosis, translation initiation regulation, growth, development, and other functions. Here, we report the impact of BTF3 on abiotic tolerance in higher plants.(More)
Silicon (Si) has been shown to increase plant stress tolerance. However, the molecular mechanisms underlying the effects of Si in alleviating drought stress in winter wheat are unknown. The aim of this study was to investigate the effects of Si on photosynthetic pigments, antioxidant contents, and transcription of several genes involved in the antioxidant(More)
Glutathione (GSH) and ascorbate (ASA) are associated with the abscisic acid (ABA)-induced abiotic tolerance in higher plant, however, its molecular mechanism remains obscure. In this study, exogenous application (10 μM) of ABA significantly increased the tolerance of seedlings of common wheat (Triticum aestivum L.) suffering from 5 days of 15% polyethylene(More)
Measurement of the electrolyte leakage rates in wheat leaves indicated that there was no significant difference in susceptibility to −5 °C spring freeze stress among five bread wheat cultivars at the floret primordium-differentiating stage of spike development. A global transcriptional profile was created using the Affymetrix Wheat GeneChip microarray for(More)
In the present study, nitrogen (N) starvation for 8 days significantly inhibited the growth of wheat seedlings as manifested by decreased plant height, shoot fresh weight, and shoot dry weight, although it stimulated root growth. The nitrate and protein contents were markedly reduced and the oxidative stress marker, malondialdehyde content, was markedly(More)
Polyphenols in whole grain wheat have potential health benefits, but little is known about the expression patterns of phenolic acid biosynthesis genes and the accumulation of phenolic acid compounds in different-colored wheat grains. We found that purple wheat varieties had the highest total phenolic content (TPC) and antioxidant activity. Among phenolic(More)
Little information is available describing the effects of exogenous H2S on the ABA pathway in the acquisition of drought tolerance in wheat. In this study, we investigated the physiological parameters, the transcription levels of several genes involved in the abscisic acid (ABA) metabolism pathway, and the ABA and H2S contents in wheat leaves and roots(More)
In this study, we investigated the possibility of using ground-based remote sensing technology to estimate powdery mildew disease severity in winter wheat. Using artificially inoculated fields, potted plants, and disease nursery tests, we measured the powdery mildew canopy spectra of varieties of wheat at different levels of incidence and growth stages to(More)
The molecular mechanism of starch synthesis regulated by abscisic acid (ABA) under water deficiency in plants was explored in this study. Starch content in leaves of wheat seedlings hydroponically grown in full-strength Hoagland solution increased quickly, however, 15 % polyethylene glycol (PEG)-induced water deficiency significantly inhibited starch(More)