Tianbiao Liu

Learn More
Nonaqueous redox flow batteries hold the promise of achieving higher energy density because of the broader voltage window than aqueous systems, but their current performance is limited by low redox material concentration, cell efficiency, cycling stability, and current density. We report a new nonaqueous all-organic flow battery based on high concentrations(More)
A TEMPO-based non-aqueous electrolyte with the TEMPO concentration as high as 2.0 m is demonstrated as a high-energy-density catholyte for redox flow battery applications. With a hybrid anode, Li|TEMPO flow cells using this electrolyte deliver an energy efficiency of ca. 70% and an impressively high energy density of 126 W h L(-1) .
Rechargeable magnesium batteries have attracted wide attention for energy storage. Currently, most studies focus on Mg metal as the anode, but this approach is still limited by the properties of the electrolyte and poor control of the Mg plating/stripping processes. This paper reports the synthesis and application of Bi nanotubes as a high-performance anode(More)
Magnesium battery is potentially a safe, cost-effective, and high energy density technology for large scale energy storage. However, the development of magnesium battery has been hindered by the limited performance and the lack of fundamental understandings of electrolytes. Here, we present a study in understanding coordination chemistry of Mg(BH₄)₂ in(More)
A nickel bis(diphosphine) complex containing pendant amines in the second coordination sphere, [Ni(P(Cy)2N(t-Bu)2)2](BF4)2 (P(Cy)2N(t-Bu)2 = 1,5-di(tert-butyl)-3,7-dicyclohexyl-1,5-diaza-3,7-diphosphacyclooctane), is an electrocatalyst for hydrogen oxidation. The addition of hydrogen to the Ni(II) complex gives three isomers of the doubly protonated Ni(0)(More)
A series of different density functional theory (DFT) methodologies (24 functionals) in conjunction with a variety of six different basis sets (BSs) was employed to investigate the relative stabilities in the oxygenated isomers of diiron complexes that mimic the active site of [FeFe]-hydrogenase: (μ-pdt)[Fe(CO)2L][Fe(CO)2L'] (pdt = propane-1,3-dithiolate; L(More)
This study explores the site specificity (sulfur vs the Fe-Fe bond) of oxygenation of diiron (Fe(I)Fe(I) and Fe(II)Fe(II)) organometallics that model the 2-iron subsite in the active site of [FeFe]-hydrogenase: (mu-pdt)[Fe(CO)(2)L][Fe(CO)(2)L'] (L = L' = CO (1); L = PPh(3), L' = CO (2); L = L' = PMe(3) (4)) and (mu-pdt)(mu-H)[Fe(CO)(2)PMe(3)](2) (5). DFT(More)
A series of asymmetrically disubstituted models of the active site of [FeFe]-hydrogenase, (mu-pdt)[Fe(CO) 2PMe 3][Fe(CO) 2NHC] (pdt = 1,3-propanedithiolate, NHC = IMes, 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene IMes ( 1), IMesMe, 1-methyl,3-(2,4,6-trimethylphenyl)imidazol-2-ylidene ( 2) or IMe, 1,3-bis(methyl)imidazol-2-ylidene ( 3)), have been(More)