Learn More
Studies on the degeneration and regeneration of neurons as individual compartments of axons or somata can provide critical information for the clinical therapy of nervous system diseases. A controllable in vitro platform for multiple purposes is key to such studies. In the present study, we describe an integrated microfluidic device designed for achieving(More)
By a simple and convenient method of using formaldehyde as linkages, two new chitosan (CS) derivatives modified respectively with thiosemicarbazide (TSFCS) and thiocarbohydrazide (TCFCS) were synthesized. The new compounds were characterized and studied by Fourier transform infrared spectroscopy, elemental analysis, thermal gravity analysis and differential(More)
The presence and quantity of rare cells in the bloodstream of cancer patients provide a potentially accessible source for the early detection of invasive cancer and for monitoring the treatment of advanced diseases. The separation of rare cells from peripheral blood, as a "virtual and real-time liquid biopsy", is expected to replace conventional tissue(More)
A novel, facile, and flexible approach for the easy assembly of microfluidic droplet devices using commercially available components is presented. Three different types of devices have been designed and tested, and the experimental results indicated that the devices offer a promising platform for the controllable generation of highly monodisperse droplets(More)
Large-scale single-cell arrays are urgently required for current high-throughput screening of cell function and heterogeneity. However, the rapid and convenient generation of large-scale single-cell array in a multiplex and universal manner is not yet well established. In this paper, we report a simple and reliable method for the generation of a single-cell(More)
The development and application of miniaturized platforms with the capability for microscale and dynamic control of biomimetic and high-throughput three-dimensional (3D) culture plays a crucial role in biological research. In this study, pneumatic microstructure-based microfluidics was used to systematically demonstrate 3D tumor culture under various(More)
An Au nanoparticles/poly(caffeic acid) (AuNPs/PCA) composite modified glassy carbon (GC) electrode was prepared by successively potentiostatic technique in pH 7.4 phosphate buffer solution containing 0.02mM caffeic acid and 1.0mM HAuCl4. Electrochemical characterization of the AuNPs/PCA-GC electrode was investigated by electrochemical impedance spectroscopy(More)
The construction of a micro-platform capable of microscale control for continuous, dynamic, and high-throughput biomimetic tumor manipulation and analysis plays a significant role in biological and clinical research. Here, we introduce a pneumatic microstructure-based microfluidic platform for versatile three-dimensional (3D) tumor cultures. The(More)
Redox-active hollow spheres were prepared through extracting a polystyrene core from the latex particle (PSPAAFc) composed of the core and the polyallylamine shell including ferrocenyl carboxylic amide. The suspension of the hollow spheres showed anodic and cathodic voltammetric peaks, which were nearly reversible and diffusion-controlled. The current was 3(More)
The cellular heterogeneity of tumors has played important roles in various tumor-related research areas and applications such as the cellular biology, metastasis and clinical diagnosis of tumors. Although several microfluidics-based single-cell separation and analysis techniques have been used in research into the cellular heterogeneity of tumors, further(More)