Tian Sheng Chen

Learn More
Human ESC-derived mesenchymal stem cell (MSC)-conditioned medium (CM) was previously shown to mediate cardioprotection during myocardial ischemia/reperfusion injury through large complexes of 50-100 nm. Here we show that these MSCs secreted 50- to 100-nm particles. These particles could be visualized by electron microscopy and were shown to be phospholipid(More)
Intercellular exchange of protein and RNA-containing microparticles is an increasingly important mode of cell-cell communication. Here we investigate if mesenchymal stem cells (MSCs) known for secreting therapeutic paracrine factors also secrete RNA-containing microparticles. We observed that human embryonic stem cell (hESC)-derived MSC conditioned medium(More)
Cardiovascular disease is a major target for many experimental stem cell-based therapies and mesenchymal stem cells (MSCs) are widely used in these therapies. Transplantation of MSCs to treat cardiac disease has always been predicated on the hypothesis that these cells would engraft, differentiate and replace damaged cardiac tissues. However, experimental(More)
The therapeutic effects of mesenchymal stem cells (MSCs) transplantation are increasingly thought to be mediated by MSC secretion. We have previously demonstrated that human ESC-derived MSCs (hESC-MSCs) produce cardioprotective microparticles in pig model of myocardial ischemia/reperfusion (MI/R) injury. As the safety and availability of clinical grade(More)
Exosomes or secreted bi-lipid vesicles from human ESC-derived mesenchymal stem cells (hESC-MSCs) have been shown to reduce myocardial ischemia/reperfusion injury in animal models. However, as hESC-MSCs are not infinitely expansible, large scale production of these exosomes would require replenishment of hESC-MSC through derivation from hESCs and incur(More)
Mesenchymal stem cells (MSCs) derived from human embryonic stem cells (ESCs) have been shown to secrete exosomes that are cardioprotective against myocardial ischemia reperfusion injury in a mouse model. To elucidate this cardioprotective mechanism, we have characterized the protein, nucleic acid, and lipid composition of MSC exosomes. Here we describe the(More)
To identify unique biochemical pathways in embryonic stem cell-derived insulin-producing cells as potential therapeutic targets to prevent or delay beta-cell dysfunction or death in diabetic patients, comparative genome-wide gene expression studies of recently derived mouse insulin-producing cell lines and their progenitor cell lines were performed using(More)
  • 1