Learn More
Stochastic blockmodels are generative network models where the vertices are separated into discrete groups, and the probability of an edge existing between two vertices is determined solely by their group membership. In this paper, we derive expressions for the entropy of stochastic blockmodel ensembles. We consider several ensemble variants, including the(More)
We investigate the detectability of modules in large networks when the number of modules is not known in advance. We employ the minimum description length principle which seeks to minimize the total amount of information required to describe the network, and avoid overfitting. According to this criterion, we obtain general bounds on the detectability of any(More)
The effort to understand network systems in increasing detail has resulted in a diversity of gener-ative models that describe large-scale structure in a variety of ways, and allow its characterization in a principled and powerful manner. Current models include features such as degree correction, where nodes with arbitrary degrees can belong to the same(More)
Stochastic blockmodels are generative network models where the vertices are separated into discrete groups, and the probability of an edge existing between two vertices is determined solely by their group membership. In this paper, we derive expressions for the entropy of stochastic block-model ensembles. We consider several ensemble variants, including the(More)
A large variety of dynamical processes that take place on networks can be expressed in terms of the spectral properties of some linear operator which reflects how the dynamical rules depend on the network topology. Often, such spectral features are theoretically obtained by considering only local node properties, such as degree distributions. Many networks,(More)
Discovering and characterizing the large-scale topological features in empirical networks are crucial steps in understanding how complex systems function. However, most existing methods used to obtain the modular structure of networks suffer from serious problems, such as being oblivious to the statistical evidence supporting the discovered patterns, which(More)
We investigate the evolution of Boolean networks subject to a selective pressure which favors robustness against noise, as a model of evolved genetic regulatory systems. By mapping the evolutionary process into a statistical ensemble and minimizing its associated free energy, we find the structural properties which emerge as the selective pressure is(More)
Many network systems are composed of interdependent but distinct types of interactions, which cannot be fully understood in isolation. These different types of interactions are often represented as layers, attributes on the edges, or as a time dependence of the network structure. Although they are crucial for a more comprehensive scientific understanding,(More)
Non-centralized recommendation-based decision making is a central feature of several social and technological processes, such as market dynamics, peer-to-peer file-sharing and the web of trust of digital certification. We investigate the properties of trust propagation on networks, based on a simple metric of trust transitivity. We investigate analytically(More)
A substantial volume of research is devoted to studies of community structure in networks, but communities are not the only possible form of large-scale network structure. Here, we describe a broad extension of community structure that encompasses traditional communities but includes a wide range of generalized structural patterns as well. We describe a(More)