Tiago Lazzaretti Fernandes

Learn More
BACKGROUND Myocardial infarction (MI) is accompanied by cardiac growth, increased collagen deposition, cell death and new vascularization of the cardiac tissue, which results in reduced ventricular compliance. The MiRNA-29 family (29a, 29b, and 29c) targets mRNAs that encode collagens and other proteins involved in fibrosis. In this study we assessed the(More)
BACKGROUND AND PURPOSE Regular physical activity is an effective non-pharmacological therapy for prevention and control of hypertension. We investigated the effects of aerobic exercise training in vascular remodelling and in the mechanical and functional alterations of coronary and small mesenteric arteries from spontaneously hypertensive rats (SHR). (More)
PURPOSE MicroRNA (miRNA)-126 is angiogenic and has two validated targets: Sprouty-related protein 1 (Spred-1) and phosphoinositol-3 kinase regulatory subunit 2 (PI3KR2), negative regulators of angiogenesis by VEGF pathway inhibition. We investigated the role of swimming training on cardiac miRNA-126 expression related to angiogenesis. METHODS Female(More)
Aerobic exercise training (ET) lowers hypertension and improves patient outcomes in cardiovascular disease. The mechanisms of these effects are largely unknown. We hypothesized that ET modulates microRNAs (miRNAs) involved in vascularization. miRNA-16 regulates the expression of vascular endothelial growth factor and antiapoptotic protein Bcl-2. miRNA-21(More)
Left ventricular (LV) hypertrophy is an important physiological compensatory mechanism in response to chronic increase in hemodynamic overload. There are two different forms of LV hypertrophy, one physiological and another pathological. Aerobic exercise induces beneficial physiological LV remodeling. The molecular/cellular mechanisms for this effect are not(More)
PURPOSE Cardiac aldosterone might be involved in the deleterious effects of nandrolone decanoate (ND) on the heart. Therefore, we investigated the involvement of cardiac aldosterone, by the pharmacological block of AT1 or mineralocorticoid receptors, on cardiac hypertrophy and fibrosis. METHODS Male Wistar rats were randomized into eight groups (n = 14(More)
AIMS This study was conducted to assess the isolated and combined effects of nandrolone and resistance training on cardiac morphology, function, and mRNA expression of pathological cardiac hypertrophy markers. MAIN METHODS Wistar rats were randomly divided into four groups and submitted to 6 weeks of treatment with nandrolone and/or resistance training.(More)
Among the molecular, biochemical and cellular processes that orchestrate the development of the different phenotypes of cardiac hypertrophy in response to physiological stimuli or pathological insults, the specific contribution of exercise training has recently become appreciated. Physiological cardiac hypertrophy involves complex cardiac remodeling that(More)
Aerobic exercise training leads to a physiological, nonpathological left ventricular hypertrophy; however, the underlying biochemical and molecular mechanisms of physiological left ventricular hypertrophy are unknown. The role of microRNAs regulating the classic and the novel cardiac renin-angiotensin (Ang) system was studied in trained rats assigned to 3(More)
OBJECTIVE Obesity and renin angiotensin system (RAS) hyperactivity are profoundly involved in cardiovascular diseases, however aerobic exercise training (EXT) can prevent obesity and cardiac RAS activation. The study hypothesis was to investigate whether obesity and its association with EXT alter the systemic and cardiac RAS components in an obese Zucker(More)