Learn More
Discovering causal relationships in large databases of observational data is challenging. The pioneering work in this area was rooted in the theory of Bayesian network (BN) learning, which however, is a NP-complete problem. Hence several constraint-based algorithms have been developed to efficiently discover causations in large databases. These methods(More)
Discovering causal relationships is the ultimate goal of many scientific explorations. Causal relationships can be identified with controlled experiments, but such experiments are often very expensive and sometimes impossible to conduct. On the other hand, the collection of observational data has increased dramatically in recent decades. Therefore it is(More)
MOTIVATION microRNAs (miRNAs) are known to play an essential role in the post-transcriptional gene regulation in plants and animals. Currently, several computational approaches have been developed with a shared aim to elucidate miRNA-mRNA regulatory relationships. Although these existing computational methods discover the statistical relationships, such as(More)
Transcription factors (TFs) and microRNAs (miRNAs) are primary metazoan gene regulators. Regulatory mechanisms of the two main regulators are of great interest to biologists and may provide insights into the causes of diseases. However, the interplay between miRNAs and TFs in a regulatory network still remains unearthed. Currently, it is very difficult to(More)
Randomised controlled trials (RCTs) are the most effective approach to causal discovery, but in many circumstances it is impossible to conduct RCTs. Therefore, observational studies based on passively observed data are widely accepted as an alternative to RCTs. However, in observational studies, prior knowledge is required to generate the hypotheses about(More)
MOTIVATION MicroRNAs (miRNAs) play crucial roles in complex cellular networks by binding to the messenger RNAs (mRNAs) of protein coding genes. It has been found that miRNA regulation is often condition-specific. A number of computational approaches have been developed to identify miRNA activity specific to a condition of interest using gene expression(More)
microRNAs (miRNAs) are important gene regulators. They control a wide range of biological processes and are involved in several types of cancers. Thus, exploring miRNA functions is important for diagnostics and therapeutics. To date, there are few feasible experimental techniques for discovering miRNA regulatory mechanisms. Alternatively, predictions of(More)
BACKGROUND microRNAs (miRNAs) are short regulatory RNAs that are involved in several diseases, including cancers. Identifying miRNA functions is very important in understanding disease mechanisms and determining the efficacy of drugs. An increasing number of computational methods have been developed to explore miRNA functions by inferring the miRNA-mRNA(More)
Discovering the regulatory relationships between microRNAs (miRNAs) and mRNAs is an important problem that interests many biologists and medical researchers. A number of computational methods have been proposed to infer miRNA-mRNA regulatory relationships, and are mostly based on the statistical associations between miRNAs and mRNAs discovered in(More)