Thu D. Nguyen

Learn More
Interest has been growing in powering datacenters (at least partially) with renewable or "green" sources of energy, such as solar or wind. However, it is challenging to use these sources because, unlike the "brown" (carbon-intensive) energy drawn from the electrical grid, they are not always available. This means that energy demand and supply must be(More)
We introduce the PlanetP system, which explores the construction of a content addressable publish/subscribe service using gossiping between peers of an unstructured peerto-peer (P2P) community. Unlike many recent P2P systems that have focused on enabling very large-scale name-based object location, PlanetP does not build and maintain a sophisticated(More)
Several companies have recently announced plans to build "green" datacenters, i.e. datacenters partially or completely powered by renewable energy. These datacenters will either generate their own renewable energy or draw it directly from an existing nearby plant. Besides reducing carbon footprints, renewable energy can potentially reduce energy costs,(More)
In this paper, we propose GreenSlot, a parallel batch job scheduler for a datacenter powered by a photovoltaic solar array and the electrical grid (as a backup). GreenSlot predicts the amount of solar energy that will be available in the near future, and schedules the workload to maximize the green energy consumption while meeting the jobs' deadlines. If(More)
In this paper, we first study the impact of load placement policies on cooling and maximum data center temperatures in cloud service providers that operate multiple geographically distributed data centers. Based on this study, we then propose dynamic load distribution policies that consider all electricity-related costs as well as transient cooling effects.(More)
The large amount of energy consumed by Internet services represents significant and fast-growing financial and environmental costs. Increasingly, services are exploring dynamic methods to minimize energy costs while respecting their service-level agreements (SLAs). Furthermore, it will soon be important for these services to manage their usage of(More)
We consider the problem of content search and retrieval in peer-to-peer (P2P) communities. P2P computing is a potentially powerful model for information sharing between ad hoc groups of users because of its low cost of entry and natural model for resource scaling with community size. As P2P communities grow in size, however, locating information distributed(More)
Operator mistakes are a significant source of unavailability in modern Internet services. In this paper, we first characterize these mistakes by performing an extensive set of experiments using human operators and a realistic three-tier auction service. The mistakes we observed range from software misconfiguration, to fault misdiagnosis, to incorrect(More)
We demonstrate a framework for improving the availability of cluster based Internet services. Our approach models Internet services as a collection of interconnected components, each possessing well defined interfaces and failure semantics. Such a decomposition allows designers to engineer high availability based on an understanding of the interconnections(More)
This paper presents the design and evaluation of a novel distributed shared hosting approach, DMap, for managing dynamic identifier to locator mappings in the global Internet. DMap is the foundation for a fast global name resolution service necessary to enable emerging Internet services such as seamless mobility support, content delivery and cloud(More)