Thorsten Wagener

Learn More
Conceptual modelling requires the identification of a suitable model structure and the estimation of parameter values through calibration against observed data. A lack of objective approaches to evaluate model structures and the inability of calibration procedures to distinguish between the suitability of different parameter sets are major sources of(More)
An important goal of spatially distributed hydrologic modeling is to provide estimates of streamflow (and river levels) at any point along the river system. To encourage collaborative research into appropriate levels of model complexity, the value of spatially distributed data, and methods suitable for model development and calibration, the US National(More)
This paper discusses the need for a well-considered approach to reconciling environmental theory with observations that has clear and compelling diagnostic power. This need is well recognized by the scientific community in the context of the ‘Predictions in Ungaged Basins’ initiative and the National Science Foundation sponsored ‘Environmental(More)
Hydrology does not yet possess a generally agreed upon catchment classification system. Such a classification framework should provide a mapping of landscape form and hydro-climatic conditions on catchment function (including partition, storage, and release of water), while explicitly accounting for uncertainty and for variability at multiple temporal and(More)
The call for more effective integration of science and decision making is ubiquitous in environmental management. While scientists often complain that their input is ignored by decision makers, the latter have also expressed dissatisfaction that critical information for their decision making is often not readily available or accessible to them, or not(More)
Many existing hydrological modelling procedures do not make best use of available information, resulting in non-minimal uncertainties in model structure and parameters, and a lack of detailed information regarding model behaviour. A framework is required that balances the level of model complexity supported by the available data with the level of(More)
[1] The problems of identifying the most appropriate model structure for a given problem and quantifying the uncertainty in model structure remain outstanding research challenges for the discipline of hydrology. Progress on these problems requires understanding of the nature of differences between models. This paper presents a methodology to diagnose(More)
[1] Distributed hydrological models have the potential to provide improved streamflow forecasts along the entire channel network, while also simulating the spatial dynamics of evapotranspiration, soil moisture content, water quality, soil erosion, and land use change impacts. However, they are perceived as being difficult to parameterize and evaluate, thus(More)
Scenarios are possible future states of the world that represent alternative plausible conditions under different assumptions. Often, scenarios aredeveloped in a context relevant to stakeholders involved in their applications since the evaluation of scenario outcomes and implications can enhance decision-making activities. This paper reviews the(More)