Thorsten Schmitt

Learn More
With the services that autonomous robots are to provide becoming more demanding, the states that the robots have to estimate become more complex. In this article, we develop and analyze a probabilistic, vision-based state estimation method for individual, autonomous robots. This method enables a team of mobile robots to estimate their joint positions in a(More)
This paper is based on the neural folding architecture (FA). The FA is a recurrent neural network architecture which is especially suited for adaptive structure processing, i.e. learning approximations of mappings from symbolic term structures to IR n. The main objective of this paper is to demonstrate that the FA can be successfully applied to approximate(More)
The concepts and technical realisation of the high-resolution soft X-ray beamline ADRESS operating in the energy range from 300 to 1600 eV and intended for resonant inelastic X-ray scattering (RIXS) and angle-resolved photoelectron spectroscopy (ARPES) are described. The photon source is an undulator of novel fixed-gap design where longitudinal movement of(More)
In many robot applications, autonomous robots must be capable of localizing the objects they are to manipulate. In this paper we address the object localization problem by fitting a parametric curve model to the object contour in the image. The initial prior of the object pose is iteratively refined to the posterior distribution by optimizing the separation(More)
We probe the collective magnetic modes of La2CuO4 and underdoped La2-xSrxCuO4 (LSCO) by momentum resolved resonant inelastic x-ray scattering (RIXS) at the Cu L3 edge. For the undoped antiferromagnetic sample, we show that the single magnon dispersion measured with RIXS coincides with the one determined by inelastic neutron scattering, thus demonstrating(More)
We investigate magnetic excitations in the spin-ladder compound Sr_{14}Cu_{24}O_{41} using high-resolution Cu L_{3} edge resonant inelastic x-ray scattering (RIXS). Our findings demonstrate that RIXS couples to two-triplon collective excitations. In contrast to inelastic neutron scattering, the RIXS cross section changes only moderately over the entire(More)
When viewed as an elementary particle, the electron has spin and charge. When binding to the atomic nucleus, it also acquires an angular momentum quantum number corresponding to the quantized atomic orbital it occupies. Even if electrons in solids form bands and delocalize from the nuclei, in Mott insulators they retain their three fundamental quantum(More)
The metal-insulator transition and the intriguing physical properties of rare-earth perovskite nickelates have attracted considerable attention in recent years. Nonetheless, a complete understanding of these materials remains elusive. Here we combine X-ray absorption and resonant inelastic X-ray scattering (RIXS) spectroscopies to resolve important aspects(More)
High resolution resonant inelastic x-ray scattering has been performed to reveal the role of lattice coupling in a family of quasi-1D insulating cuprates, Ca2+5xY2-5xCu5O10. Site-dependent low-energy excitations arising from progressive emissions of a 70 meV lattice vibrational mode are resolved for the first time, providing a direct measurement of(More)