Thorsten Ruppert

Learn More
Development of hepatocellular carcinoma (HCC) is accompanied by a continuous increase in reactive oxygen species (ROS) levels. To investigate the primary source of ROS in liver cells, we used tumor necrosis factor-alpha (TNF-α) as stimulus. Applying inhibitors against the respiratory chain complexes, we identified mitochondria as primary source of ROS(More)
Mitochondria-originating reactive oxygen species (ROS) control T cell receptor (TCR)-induced gene expression. Here, we show that TCR-triggered activation of ADP-dependent glucokinase (ADPGK), an alternative, glycolytic enzyme typical for Archaea, mediates generation of the oxidative signal. We also show that ADPGK is localized in the endoplasmic reticulum(More)
The high-mobility group box 1 (HMGB1) protein has a central role in immunological antitumour defense. Here we show that natural killer cell-derived HMGB1 directly eliminates cancer cells by triggering metabolic cell death. HMGB1 allosterically inhibits the tetrameric pyruvate kinase isoform M2, thus blocking glucose-driven aerobic respiration. This results(More)
Maleic acid (MA) has been shown to induce Fanconi syndrome via disturbance of renal energy homeostasis, though the underlying pathomechanism is still under debate. Our study aimed to examine the pathomechanism underlying maleic acid-induced nephrotoxicity. Methylmalonic acid (MMA) is structurally similar to MA and accumulates in patients affected with(More)
Methylmalonic acidurias (MMAurias) are a group of inherited disorders in the catabolism of branched-chain amino acids, odd-chain fatty acids and cholesterol caused by complete or partial deficiency of methylmalonyl-CoA mutase (mut(0) and mut(-) subtype respectively) and by defects in the metabolism of its cofactor 5'-deoxyadenosylcobalamin (cblA, cblB or(More)
  • 1